Skip to main content
Log in

Zooplankton Chitobiase Activity as an Endpoint of Pharmaceutical Effect

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Numerous human and veterinary pharmaceuticals are constantly entering surface waters, despite little understanding of their potential impacts on aquatic ecosystems. To address this concern, an attempt to create a simple, reproducible, inexpensive, and sublethal toxicity bioassay for freshwater zooplankton was initiated. The approach was centered on characterizing the response of a zooplankton enzyme, chitobiase, to the presence of a toxicant. The aim of the present research was to develop a reproducible laboratory-based assay for Daphnia magna chitobiase activity and to screen four commonly prescribed pharmaceuticals using that assay. The four pharmaceuticals tested for potential effects on D. magna chitobiase activity were atorvastatin, lovastatin, fluoxetine, and sertraline. We were able to detect exposure-associated differences in chitobiase activity at concentrations of 0.1 μg/L fluoxetine after 24 and 72 hours of exposure. Differences were also detected for the other compounds. The response of chitobiase was found to be promising as an assay to measure sublethal effects in D. magna and perhaps other zooplankton species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson PD, D’aco VJ, Shanahan P, Chapra SC, Buzby ME, Cunningham VL, et al. (2004) Screening analysis of human pharmaceutical compounds in U.S. surface waters. Environ Sci Technol 38(3):838–849

    Article  CAS  Google Scholar 

  • Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333:167–184

    Article  CAS  Google Scholar 

  • American Society for Testing, Materials (2000a) Standard guide for conducting acute toxicity tests on aqueous ambient samples and effluents with fishes, macroinvertebrates, and amphibians (E 1192-97). Annual book of ASTM standards. ASTM International, West Conshohocken PA, USA, p 440–452

  • American Society for Testing, Materials (2000b) Standard guide for conducting Daphnia magna life-cycle toxicity tests (E1193-97). Annual book of ASTM standards. ASTM International, West Conshohocken PA, pp 453–470

  • Black DM, Bakker-Arkema RG, Nawrocki JW (1998) An overview of the clinical safety profile of atorvastatin (Lipitor), a new HMG-CoA reductase inhibitor. Arch Intern Med 158(6):577–584

    Article  CAS  Google Scholar 

  • Boudreau TM, Sibley PK, Solomon KR (1994) CT-BIO-001—Preparation of laboratory freshwater algae cultures (SOP). Center for Toxicology, University of Guelph, Guelph, Ontario, Canada, pp 1–6

  • Mabury SA, Sibley PK, Solomon KR (2004) Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aquat Toxicol 70(1):23–40

    Article  CAS  Google Scholar 

  • Brooks B, Foran C, Richards S, Weston J, Turner P, Stanley J, et al. (2003a) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183

  • Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM, et al. (2003b) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52(1):135–142

  • Buikema Jr AJ (1973) Some effects of light on the growth, molting, reproduction and survival of the cladoceran, Daphnia pulex. Hydrobiologia 41(3):391–418

    Article  Google Scholar 

  • Cahill JD, Furlong ET, Burkhardt MR, Kolpin D, Anderson LG (2004) Determination of pharmaceutical compounds in surface -and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 1041:171–180

    Article  CAS  Google Scholar 

  • Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) Strategic survey of therapeutic drugs in the Rivers Po and Lambro in Northern Italy. Environ Sci Technol 37(7):1241–1248

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: Agents of subtle change?. Environ Health Perspect 107(Suppl. 6):907–938

    Article  CAS  Google Scholar 

  • Dussault EB, Balakakrishnan VK, Sverko E, Solomon KR, Sibley PK (2007) Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ Toxicol Chem (in press)

  • Dzialowski EM, Brooks BW, Turner PK, Huggett DB (2002) Influence of ß-adrenergic blockers on Daphnia magna heart rate, respiration, and reproduction. Society of Environmental Toxicology and Chemistry, Salt Lake City, UT

    Google Scholar 

  • Espie PJ, Roff JC (1995) A biochemical index of duration of the molt cycle for planktonic crustacea based on the chitin-degrading enzyme, chitobiase. Limnol Oceanogr 40(6):1028–1034

    CAS  Google Scholar 

  • Flaherty CM (2001) Ecological impacts of pharmaceuticals on zooplankton. Abstracts of the 2nd Annual SETAC Meeting, Baltimore, MD, 20 November 2001

  • Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61(2):200–207

    Article  CAS  Google Scholar 

  • Fong PP (1998) Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors. Biol Bull 194(2):143–149

    Article  CAS  Google Scholar 

  • Goodnick PJ, Goldstein BJ (1998). Selective serotonin reuptake inhibitors in affective disorders—I. Basic pharmacology. J Psychopharmacol 12:S5–S20

    CAS  Google Scholar 

  • Hanazato T, Hirokawa H (2004) Changes in vulnerability of Daphnia to an insecticide application depending on the population phase. Freshwater Biol 49(4):402–409

    Article  CAS  Google Scholar 

  • Hanson ML, Lagadic L (2005) Chitobiase activity as an indicator of aquatic ecosystem health. Aquat Ecol Health Manage 8(4):441–450

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  • Henry TB, Kwon JW, Armbrust KL, Black MC (2004) Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia. Environ Toxicol Chem 23(9):2229–2233

    Article  CAS  Google Scholar 

  • Huber R, Delago A, Isaksson K, Kravitz EA (1997) Serotonin and aggressive motivation in crustaceans: Altering the decision to retreat. Proc Natl Acad Sci U S A 94:5939–5942

    Article  CAS  Google Scholar 

  • Husby PG, Hendrix KW, Bettencourt B (1997) Preparation of foods for freshwater toxicity testing and culturing (SOP #1081). United States Environmental Protection Agency Region 9 Laboratory, Richmond, CA, pp 1–5

    Google Scholar 

  • Inouye LS, Ang C-Y, McFarland VA (2004) Development of a cell-based screening assay for invertebrate molting disruption. Aquat Ecol Health Manage 7(3):407–413

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Lam MW, Young CJ, Brain R, Johnson DJ, Hanson ML, Wilson CJ, et al. (2004) The aquatic persistence of eight pharmaceuticals in outdoor microcosms monitored by HPLC-UV and LC-MS-MS using electrospray ionization. Environ Toxicol Chem 23(6):1431–1440

    Article  CAS  Google Scholar 

  • Metcalfe C, Koenig B (2001) A survey of levels of ibuprofen in surface water in the lower Great Lakes. Worsfold Water Quality Centre, Trent University, Peterborough, Ontario, Canada, pp 1–8

  • Metcalfe CD, Miao XS, Koenig BG, Struger J (2003) Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem 22(12):2881–2889

    Article  CAS  Google Scholar 

  • Miao XS, Metcalfe CD (2002) Determination of pharmaceuticals in aqueous samples using positive and negative voltage switching microbore liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom 38:27–34

    Article  CAS  Google Scholar 

  • Muyssen BTA, Bossuyt BTA, Janssen CR (2005) Inter- and intra-species variation in acute zinc tolerance of field-collected cladoceran populations. Chemosphere 61(8):1159–1167

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (1977) Chitinases and related enzymes. In: Muzzarelli RAA (ed) Chitin. Pergamon, Oxford, UK, pp. 155–177

    Google Scholar 

  • Nation JL (2002) Insect physiology and biochemistry. CRC, Boca Raton, FL

  • NDC Health (2004) The top 200 prescriptions: 2004 US prescriptions based on more than 2.4 billion U.S. prescriptions. RxList: The internet drug index. Available at: http://www.rxlist.com/top200.htm. Accessed: July 19, 2005

  • Oosterhuis SS, Baars MA, Breteler W (2000) Release of the enzyme chitobiase by the copepod Temora longicornis: Characteristics and potential tool for estimating crustacean biomass production in the sea. Mar Ecol Prog Ser 196:195–206

    Article  CAS  Google Scholar 

  • Richards SM, Wilson CJ, Johnson DJ, Castle DM, Lam M, Mabury SA, et al. (2004) Effects of pharmaceutical mixtures in aquatic microcosms. Environ Toxicol Chem 23(4):1035–1042

    Article  CAS  Google Scholar 

  • Sastri AR, Roff JC (2000) Rate of chitobiase degradation as a measure of development rate in planktonic Crustacea. Can J Fish Aquat Sci 57(10):1965–1968

    Article  CAS  Google Scholar 

  • Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundam Clin Pharmacol 19(1):117–125

    Article  CAS  Google Scholar 

  • Schloss P, Williams DC (1998) The serotonin transporter: A primary target for antidepressant drugs. J Psychopharmacol 12(2):115–121

    Article  CAS  Google Scholar 

  • Ternes T (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    Article  CAS  Google Scholar 

  • Ternes T, Wilken RD (1999) Drugs and hormones as pollutants of the aquatic environment: Determination and ecological impacts. Sci Total Environ 225:1–2

    Article  CAS  Google Scholar 

  • Thomas KV, Hilton M.J (2004) The occurrence of selected human pharmaceutical compounds in UK estuaries. Mar Pollut Bull 49:436–44

    Article  CAS  Google Scholar 

  • Thorp JH, Alan AP (2001) Ecology and classification of North American freshwater invertebrates. 2nd ed. Academic, San Diego, CA

    Google Scholar 

  • United States Geological Survey (2001) National reconnaissance of emerging contaminants in the nation’s water resources. Available at: http://www.toxics.usgs.gov/regional/emc.html

  • Villegas-Navarro A, Rosas-L E, Reyes JL (2003) The heart of Daphnia magna: Effects of four cardioactive drugs. Comp Biochem Physiol C 136:127–134

    Article  CAS  Google Scholar 

  • Zou EM, Fingerman M (1999a) Effects of the estrogenic agents on chitobiase activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Ecotoxicol Environ Safe 42:185–190

    Article  CAS  Google Scholar 

  • Zou EM, Fingerman M (1999b) Effects of exposure to diethyl phthalate, 4-(tert)-octylphenol, and 2,4,5-trichlorobiphenyl on activity of chitobiase in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Comp Biochem Physiol C 122:115–120

    CAS  Google Scholar 

  • Zou EM (2005) Impacts of xenobiotics on crustacean molting: The invisible endocrine disruption. Integr Comp Biol 45(1):33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the UC Foundation and the University Honors program of the University of Tennessee at Chattanooga. The authors thank M. MacDonald and J. Conley for their thorough reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Richards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, S.M., Kelly, S.E. & Hanson, M.L. Zooplankton Chitobiase Activity as an Endpoint of Pharmaceutical Effect. Arch Environ Contam Toxicol 54, 637–644 (2008). https://doi.org/10.1007/s00244-007-9062-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-007-9062-9

Keywords

Navigation