Skip to main content

Advertisement

Log in

Distribution of Mercury in Several Environmental Compartments in an Aquatic Ecosystem Impacted by Gold Mining in Northern Colombia

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Mercury (Hg) used in gold amalgamation is a major source of contamination in developing countries. Water, sediments, plankton, fish, and human samples from Grande Marsh, a Hg-polluted marsh located in the south of Bolívar, municipality of Montecristo, Colombia, were collected during both the rainy and the dry seasons (2003–2006), at three different sampling sites, and analyzed for total Hg (T-Hg) content. Water, sediment, seston, phytoplankton, and zooplankton T-Hg concentrations were 0.33 ± 0.03 μg/L, 0.71 ± 0.03, 1.20 ± 0.06, 0.52 ± 0.03, and 0.94 ± 0.05 μg/g dry weight (wt), respectively. T-Hg levels in these compartments were highly pair-correlated (< 0.05), and for all of them, except sediments, greater values were found during the dry season. Significant differences were observed for T-Hg concentrations in fish according to their trophic position. Average highest T-Hg values were found in carnivorous species such as Caquetaia kraussi (1.09 ± 0.17 μg/g fresh wt), Hoplias malabaricus (0.58 ± 0.05 μg/g fresh wt), and Plagioscion surinamensis (0.53 ± 0.07 μg/g fresh wt), whereas the lowest were detected in noncarnivorous species such as Prochilodus magdalenae (0.157 ± 0.01 μg/g fresh wt). In those fish species where seasonal comparisons were possible, specimens captured during the dry season had greater T-Hg levels in muscle. Although the T-Hg mean level for all fish samples (0.407 ± 0.360 μg/g fresh wt) did not exceed the recommended limit ingestion level, risk assessment based on the hazard index suggested that a fish intake of 0.12 kg per day (a small carnivorous specimen) could increase the potential health effects related to Hg exposure in the local human population, whose hair T-Hg median value was 4.7 μg/g, and presented a low but significant correlation with fish consumption (= 0.250, = 0.016). In short, Hg pollution from gold mining around Grande Marsh has permeated the food web, and currently levels in fish represent a serious concern for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appleton J, Williams T., Orbea H, Carrasco M (2001) Fluvial contamination associated with artisanal gold mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija areas, Ecuador. Water Air Soil Pollut 131:19–39

    Article  CAS  Google Scholar 

  • Appleton JD, Weeks JM, Calvez JP, Beinhoff C (2006) Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines. Sci Total Environ 354:198–211

    Article  CAS  Google Scholar 

  • ATSDR (1997) Toxicological profile for mercury. Draft for public comment (update). Prepared by Research Triangle Institute under Contract No. 205-93-0606. Prepared for U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August

  • Back R, Gorski P, Cleckner L, Hurley J (2003) Mercury content and speciation in the plankton and benthos of Lake Superior. Sci Total Environ 304:349–354

    Article  CAS  Google Scholar 

  • Barbosa A, de Souza J, Dórea J, Jardim W, Fadini P (2003) Mercury biomagnification in a tropical black water, Rio Negro, Brazil. Arch Environ Contam Toxicol 45:235–246

    Article  CAS  Google Scholar 

  • Bastos WR, Gomes JP, Oliveira RC, Almeida R, Nascimento EL, Bernardi JV, de Lacerda LD, da Silveira EG, Pfeiffer WC (2006) Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil. Sci Total Environ 368: 344–351

    Article  CAS  Google Scholar 

  • Basu N, Scheuhammer AM, Evans RD, O’Brien M, Chan HM (2007) Cholinesterase and monoamine oxidase activity in relation to mercury levels in the cerebral cortex of wild river otters. Hum Exp Toxicol 26:213–220

    Article  CAS  Google Scholar 

  • Butala SJ, Scanlan LP, Chaudhuri SN, Perry DD, Taylor RJ (2007) Interlaboratory bias in the determination of mercury concentrations in commercially available fish utilizing thermal decomposition/amalgamation atomic absorption spectrophotometry. J Food Prot 70:2422–2425

    CAS  Google Scholar 

  • Caetano M, Vale C (2003) Trace-element Al composition of seston and plankton along the Portuguese coast. Acta Oecol 24:S341–S349

    Article  Google Scholar 

  • Chen CY, Folt CL (2005) High plankton densities reduce mercury biomagnification. Environ Sci Technol 39:115–121

    Article  CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  Google Scholar 

  • Coquery M, Welbourn P (1995) The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophytes Eriocaulon septangulare. Water Res 29:2094–2102

    Article  CAS  Google Scholar 

  • Counter SA (2003) Neurophysiological anomalies in brainstem responses of mercury-exposed children of Andean gold miners. J Occup Environ Med 45:87–95

    Article  CAS  Google Scholar 

  • Dixon R, Jones B (1994) Mercury concentrations in stomach contents and muscle of five fish species from the northeast coast of England. Mar Pollut Bull 28:741–745

    Article  CAS  Google Scholar 

  • Dominique Y, Muresan B, Duran R, Richard S, Boudou A (2007) Simulation of the chemical fate and bioavailability of liquid elemental mercury drops from gold mining in Amazonian freshwater systems. Environ Sci Technol 41:7322–7329

    Article  CAS  Google Scholar 

  • Donkor AK, Bonzongo JC, Nartey VK, Adotey DK (2006) Mercury in different environmental compartments of the Pra River Basin, Ghana. Sci Total Environ 368:164–176

    Article  CAS  Google Scholar 

  • Eisler R (2004) Mercury hazards from gold mining to humans, plants, and animals. Rev Environ Contam Toxicol 181:139–198

    Article  CAS  Google Scholar 

  • Gammons CH, Slotton DG, Gerbrandt B, Weight W, Young CA, McNearny RL, Cámac E, Calderón R, Tapia H (2006) Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru. Sci Total Environ 368:637–648

    Article  CAS  Google Scholar 

  • Guimarães J, Fostier A, Forti M, Melfi J, Kehrig H, Mauro J, Malm O, Krug J (1999) Mercury in Human and Environmental Samples fromTwo Lakes in Amapá, Brazilian Amazon. Ambio 28:296–301

    Google Scholar 

  • Guimarães JR, Roulet M, Lucotte M, Mergler D (2000) Mercury methylation along a lake-forest transect in the Tapajós river floodplain, Brazilian Amazon: seasonal and vertical variations. Sci Total Environ 261:91–98

    Article  Google Scholar 

  • Gill GA, Bruland KW (1990) Mercury speciation in surface freshwater systems in California and other areas. Environ Sci Technol 24:1392–1400

    Article  CAS  Google Scholar 

  • Heim WA, Coale KH, Stephenson M, Choe KY, Gill GA, Foe C (2007) Spatial and habitat-based variations in total and methyl mercury concentrations in superficial sediments in the San Francisco Bay-Delta. Environ Sci Technol 41:3501–3507

    Article  CAS  Google Scholar 

  • Hylander L, Meili M, Oliveira L, Castro E, Guimaraes J, Araujo D, Neves R, Barros A, Silva G (2000a) Relationship of mercury with aluminum, iron and manganese oxy-hydroxides in sediments from the Alto Pantanal, Brazil. Sci Total Environ 260:97–107

    Article  CAS  Google Scholar 

  • Hylander L, Pinto F, Guimaraes J, Meili M, Oliveira L, Castro E (2000b) Fish mercury concentrations in the Alto Pantanal, Brazil: influence of season and water parameters. Sci Total Environ 261:9–20

    Article  CAS  Google Scholar 

  • Ikingura JR, Akagi H, Mujumba J, Messo C (2006) Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria goldfields, Tanzania. J Environ Manage 81:167–173

    Article  CAS  Google Scholar 

  • Kainz M, Lucotte M (2002) Can flooded organic matter from sediments predict mercury concentrations in zooplankton of a perturbed lake? Sci Total Environ 293:151–161

    Article  CAS  Google Scholar 

  • Kamman NC, Driscoll CT, Estabrook R, Evers DC, Miller E (2003) Biogeochemistry of mercury in Vermont and New Hampshire lakes—an assessment of mercury in waters, sediments and biota of Vermont and New Hampshire lakes. Comprehensive Final Project Report to USEPA. Vermont Department of Environmental Conservation, Waterbury

  • Karunasagar D, Balarama Krishna MV, Anjaneyulu Y, Arunachalam J. (2006) Studies of mercury pollution in a lake due to a thermometer factory situated in a tourist resort: Kodaikkanal, India. Environ. Pollut 143(1):153–158

    Article  CAS  Google Scholar 

  • Kehrig H, Malm O, Akagi H, Guimaraes J, Torres J (1998) Methylmercury in fish and hair samples from the Balbina reservoir, Brazilian Amazon. Environ Res Sect A 77:84–90

    Article  CAS  Google Scholar 

  • Kligerman DC, La Rovere EL, Costa MA (2001) Management challenges on small-scale gold mining activities in Brazil. Environ Res 87:181–198

    Article  CAS  Google Scholar 

  • Kojadinovic J, Potier M, Le Corre M, Cosson RP, Bustamante P (2006) Mercury content in commercial pelagic fish and its risk assessment in the western Indian Ocean. Sci Total Environ 366:688–700

    Article  CAS  Google Scholar 

  • Kongchum M, Devai I, DeLaune RD, Jugsujinda A (2006) Total mercury and methylmercury in freshwater and salt marsh soils of the Mississippi river deltaic plain. Chemosphere 63:1300–1303

    Article  CAS  Google Scholar 

  • Lacerda L, Bidone E, Guimaraes A, Pfeiffer W (1994) Mercury concentrations in fish from the Itacaiúnas-Parauapebas river system, Carajás region, Amazon. An Acad Bras Cien 66:373–379

    CAS  Google Scholar 

  • Limbong D, Kumampung J, Ayhuan D, Arai T, Miyazaki N (2005) Mercury pollution related to artisanal gold mining in north Sulawesi Island, Indonesia. Bull Environ Contam Toxicol 75:989–996

    Article  CAS  Google Scholar 

  • Lodenius M, Malm O (1998) Mercury in the Amazon. Rev Environ Contam Toxicol 157:25–52

    CAS  Google Scholar 

  • Malm O, Pfeiffer WO, Souza CMM, Reuther R (1990) Mercury pollution due to gold mining in the Madeira river basin, Brazil. Ambio 19(1):11–15

    Google Scholar 

  • Malm O, Guimaraes JR, Castro M, Bastos W, Viana J, Branches F, Silveira E, Pfeiffer W (1997) Follow up of mercury in fish, human air and urine in Madeira and Tapajos basins, Amazon, Brazil. Water Air Soil Pollut 97:45–51

    CAS  Google Scholar 

  • Mauk RJ, Brown ML (2001) Selenium and mercury concentrations in brood-stock walleye collected from three sites on Lake Oahe. Arch Environ Contam Toxicol 40:257–263

    Article  CAS  Google Scholar 

  • Mirlean N, Larned ST, Nikora V, Kutter VT (2005) Mercury in lakes and lake fishes on a conservation-industry gradient in Brazil. Chemosphere 60:226–236

    Article  CAS  Google Scholar 

  • Morel F, Kraepiel A, Amyot M (1998) The chemical cycle and bioacumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  • Morrison KA, Watras CJ (1999) mercury and methylmercury in freshwater seston: direct determination at picogram per litre levels by dual filtration. Can J Fish Aquat Sci 56:760–766

    Article  CAS  Google Scholar 

  • Nguyen HL, Leermakers M, Kurunczi S, Bozo L, Baeyens W (2005) Mercury distribution and speciation in Lake Balaton, Hungary. Sci Total Environ 340:231–246

    Article  CAS  Google Scholar 

  • Olivero J, Jhonson B (2002) La contaminación con mercurio en el Sur de Bolívar. El Lado gris de la minería del oro. Editorial. Universidad de Cartagena

  • Olivero J, Solano B (1998) Mercury in environmental samples from a waterbody contaminated by gold mining in Colombia, South America. Sci Total Environ 217:83–89

    Article  CAS  Google Scholar 

  • Olivero J, Solano B, Acosta I (1998) Total mercury in muscle of fish from two marshes in Goldfields, Colombia. Bull Environ Contam Toxicol 61:182–187

    Article  CAS  Google Scholar 

  • Olivero J, Jhonson B, Arguello E (2002) Human exposure to mercury due to fish consumption in San Jorge river basin, Colombia (South America). Sci Total Environ 289:41– 47

    Article  CAS  Google Scholar 

  • Olivero J, Johnson B, Mendoza C, Paz R, Olivero R (2004) Mercury in the aquatic environment of the village of Caimito in the Mojana region, north of Colombia. Water Air Soil Pollut 159:409– 420

    Article  Google Scholar 

  • Palheta D, Taylor A (1995) Mercury in environmental and biological samples from a gold mining area in the Amazon region of Brazil. Sci Total Environ 168:63–69

    Article  CAS  Google Scholar 

  • Pataranawat P, Parkpian P, Polprasert C, Delaune RD, Jugsujinda A (2007) Mercury emission and distribution: Potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1081–1093

    CAS  Google Scholar 

  • Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2005) Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Sci Total Environ 339:89–101

    Article  CAS  Google Scholar 

  • Porvari P (1995) Mercury levels of fish in Tucurui hydroelectric reservoir and in river Mojú in Amazonia in the state of Pará, Brazil. Sci Total Environ 175:109–117

    Article  CAS  Google Scholar 

  • Prahalad AK, Seenayya G (1988) In situ partitioning and biomagnification of mercury in industrially polluted husainsagar lake, hyderabad, india. Water Air Soil Pollut 39:81–87

    Article  CAS  Google Scholar 

  • Roulet M, Lucotte M, Guimarães JR, Rheault I (2000) Methylmercury in water, seston, and epiphyton of an Amazonian river and its floodplain, Tapajós River, Brazil. Sci Total Environ 261:43–59

    Article  CAS  Google Scholar 

  • Sadiq M, Zaidi T, Al-Mohana M (1991) Sample weight and digestion temperature as critical factors in mercury determination in fish. Bull Environ Contam Toxicol 47:335–341

    Article  CAS  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, New York

    Google Scholar 

  • Sandheinrich MB, Miller KM (2006) Effects of dietary methylmercury on reproductive behavior of fathead minnows (Pimephales promelas). Environ Toxicol Chem 25:3053–3057

    Article  CAS  Google Scholar 

  • Schafer J, Blanc J, Audry S, Cossa D, Bossy C (2006) Mercury in the Lot–Garonne River system (France): sources, fluxes and anthropogenic component. Appl Geochem 21:515–527

    Article  Google Scholar 

  • Schetagne R, Doyon JF, Fournier JJ (2000) Export of mercury downstream from reservoirs. Sci Total Environ 260:135–145

    Article  CAS  Google Scholar 

  • Schmitt CJ, Brumbaugh WG (2007) Evaluation of Potentially nonlethal sampling methods for monitoring mercury concentrations in smallmouth bass (Micropterus dolomieu). Arch Environ Contam Toxicol 53:84–95

    Article  CAS  Google Scholar 

  • Sholupov S, Pogarev S, Ryzhov V, Mashyanov N, Straganov A (2004) Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process Technol 85:475–485

    Google Scholar 

  • Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL (1992) Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257:784–787

    Article  CAS  Google Scholar 

  • Telmer K, Costa M, Simões R, Araujo ES., Maurice Y (2006) The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: ground- and space-based evidence. J Environ Manage 81:101–113

    Article  CAS  Google Scholar 

  • Tremblay I, Lucotte M, Rowan D (1995) Different factors related to mercury concentration in sediments and zooplankton of 73 Canadian lakes. Water Air Soil Poll 80:961–970

    Article  CAS  Google Scholar 

  • Ullrich S, Tanton T, Abdrashitova S (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293

    Article  CAS  Google Scholar 

  • Ullrich SM, Ilyushchenko MA, Kamberov IM, Tanton TW (2007) Mercury contamination in the vicinity of a derelict chlor-alkali plant. I: Sediment and water contamination of Lake Balkyldak and the River Irtysh. Sci Total Environ 381:1–16

    Article  CAS  Google Scholar 

  • USEPA (1989) Risk assessment guidence for Superfund. Vol 1. U.S. Environmental Protection Agency, Washington, DC, p 54

    Google Scholar 

  • USEPA (1994) Methods 2451 for determination of mercury in water. U.S. Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • USEPA (1998) Method 7471B for determination of mercury in solid or semisolid waste. U.S. Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • USEPA (2000) Reference dose for mercury. External review. National Center for Environmental Assessment NCEA-S-0930. U.S. Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • Watras CJ, Back RC, Halvorsena S, Hudson RJM, Morrisona KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208

    Article  CAS  Google Scholar 

  • WHO (1989) Mercury—environmental aspects. Environmental Health Criteria 86. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • WHO (1990) Methylmercury. Environmental Health Criteria 101. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Zapata J (1994) Environmental impacts study of gold mining in the Madeira River Bolivian-Brazilian border. In: Environmental mercury pollution and its health effects in Amazon River basin. National Institute for Minamata Disease and Institute of Biophysics of the Universidad Federal do Rio de Janeiro, Rio de Janeiro, Brazil, pp 23–24

Download references

Acknowledgments

The authors thank the Universidad de Cordoba, Montería (Grant 011-2003), the Universidad de Cartagena, Cartagena, and Colciencias, Bogotá, Colombia (Grant 1107-04-16346), for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Olivero-Verbel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrugo-Negrete, J., Benitez, L.N. & Olivero-Verbel, J. Distribution of Mercury in Several Environmental Compartments in an Aquatic Ecosystem Impacted by Gold Mining in Northern Colombia. Arch Environ Contam Toxicol 55, 305–316 (2008). https://doi.org/10.1007/s00244-007-9129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-007-9129-7

Keywords

Navigation