Skip to main content

Advertisement

Log in

Accumulation and Elimination of Chromium by Freshwater Species Exposed to Spiked Sediments

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The bioaccumulation and elimination capacity of chromium were examined in four freshwater species: the submersed aquatic plant Ceratophyllum demersum (Ceratophyllaceae), the oligochaete Limnodrilus udekemianus (Tubificidae), the crab Zilchiopsis collastinensis (Decapoda), and the fish Cnesterodon decemmaculatus (Poeciliidae). All of the species were exposed simultaneously to sediments spiked with Cr (K2Cr2O7) at different concentrations for 28 days, followed by 7 days without Cr to evaluate the concentration of residual Cr. We found that Cr accumulated in the tissues of all four species. The highest bioconcentration factor obtained for each species is as follows: C. demersum, 718.66 (±272.91); L. udekemianus, 172.55 (±80.8), Z. collastinensis, 67.72 (±35.4); C. decemmaculatus, 23.11 (±12.82), all at 28 days of exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals. Springer, New York

    Google Scholar 

  • Allen H, Gongmin F, Deng B (1993) Analysis of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) for estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1453

    Article  CAS  Google Scholar 

  • ASTM (American Society of Testing, Materials) (1997) Bioaccumulation testing with Lumbriculus variegatus. E 1688-A8. ASTM, Philadelphia, pp 1109–1121

    Google Scholar 

  • Ankley GT, Cook PM, Carlson AR et al. (1992) Bioaccumulation of PCBs from sediments by oligochaetes and fishes: comparison of laboratory and field studies. Can J Fish Aquat Sci 49:2080–2085

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (2005) Standard Methods for the examination of water and wastewater. APHA, Washington, DC

    Google Scholar 

  • Behrends LL, Bailey E, Bulls MJ, Coonrod HS, Sikora FJ (1994) Seasonal trends in growth and biomass accumulation of selected nutrients and metals in six species of emergent aquatic macrophytes. In: Proceedings of the 4th International Conference on wetlands systems for water pollution control, Guangzhu, People’s Republic of China

  • Bergman HL, Dorward-King EJ (eds) (1997) Reassessment of metals criteria for aquatic life protection: Priorities for research and implementation. Society for Environmental Toxicology and Chemistry, Pensacola, FL

    Google Scholar 

  • Burgess RM, Scott KJ (1992) The significance of inplace contaminated marine sediments on the water column: pProcess and effects. In: Burton GA Jr. (ed) Sediment toxicity assessment. Lewis Publishing, Boca Raton, FL, pp 129–154

    Google Scholar 

  • Calamari D, Gaggino GF, Pachetti G (1982) Toxicokinetics of low levels of Cd, Cr, Ni and their mixture in long-term treatment on Salmo gairdneri Rich. Chemosphere 11:59–70

    Article  Google Scholar 

  • Conrad AU, Comber SD, Simkiss K (2000) New method for the assessment of contaminant uptake routes in the oligochaete Lumbriculus variegatus. Bull Environ Contam Toxicol 65:16–21

    Article  CAS  Google Scholar 

  • Courdassier M, de Vaufleury A, Crini N, Dchefler R., Badot PM (2005) Assessment of whole effluent toxicity on aquatic snails: bioaccumulation of Cr, Zn and Fe, and individual effects in bioassays. Environ Toxicol Chem 24:198–204

    Article  Google Scholar 

  • DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84:236–246

    Article  CAS  Google Scholar 

  • Dias Côrrea J, Ramos da Silva M, Bastos da Silva AC, Araújo de Lima SM, Malm O, Allodi S (2005) Tissue distribution, subcellular localization and endocrine disruption patterns induced by Cr and Mn in the crab Ucides cordatus. Aquat Toxicol 73:139–154

    Article  CAS  Google Scholar 

  • Egeler P, Meller M, Roembke J, Spoerlein P, Streit B, Nagel R (2004) Tubifex tubifex as a link in food chain transfer of hexachlorobenzene from contaminated sediment to fish. Hydrobiologia 463:171–184

    Article  Google Scholar 

  • Egeler P, Rombke J, Meller M, Knacker Th, Nagel R (1999) Bioaccumulation test with tubificid sludgeworms in artificial media-development of a standardisable method. Hydrobiologia 406:271–280

    Article  Google Scholar 

  • Farag AM, Woodward DF, Goldstein JN, Brumbaugh W, Meyer JS (1999) Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River basin, Idaho. Arch Environ Cont Toxicol 34:119–127

    Article  Google Scholar 

  • Gobas FAPC, Morrison HA (2000) Bioconcentration and biomagnification in the aquatic environment. In: Boethling RS, Mackay D (eds) Handbook of property estimation methods for chemicals. Lewis Publishers, Boca Raton, FL, pp 189–231

    Google Scholar 

  • Hammer DA, Bastian RK (1989) Wetland ecosystems: natural purifiers? In: Hammer DA (ed), Constructed wetland for waste water treatment. Lewis Publishers, Chelsea, NY, pp 5–19

    Google Scholar 

  • Heath AG (1987) Water pollution and fish physiology. CRC Press, Boca Ratón, FL

    Google Scholar 

  • Holdway DA (1988) The toxicity of chromium to fish. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 369–397

    Google Scholar 

  • Honeycutt ME, Roberts BL, Roane DS (1995) Cadmium disposition in the earthworm Eisenia fetida. Ecotox Envir Safety 30:143–150

    Article  CAS  Google Scholar 

  • Ingersoll CG, Ankley GT, Benoit DA et al. (1995) Toxicity and bioaccumulation of sediment- associated contaminants using freshwater invertebrates: a review of methods and applications. Environ Toxicol Chem 14:1885–1894

    Article  CAS  Google Scholar 

  • Ingersoll CG, Brunson EL, Wang N et al. (2003) Uptake and depuration of nonionic organic contaminants from sediment by the oligochaete Lumbriculus variegatus. Environ Toxicol Chem 22:872–885

    Article  CAS  Google Scholar 

  • Ip CCM, Li XD, Zhang G, Wong CSC, Zhang WL (2005) Heavy metal and Pb isotopic composition of aquatic organisms in the Pearl River Estuary, South China. Environ Pollut 138:494–504

    Article  CAS  Google Scholar 

  • Klerks PL, Bartholomew PR (1991) Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquat Toxicol 19:97–112

    Article  CAS  Google Scholar 

  • Klerks PL, Levinton JS (1989) Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted site. Biol Bull 176:135–141

    Article  CAS  Google Scholar 

  • Landis WG, Yu M-H (1999) Introduction to environmetal toxicology. Impacts of chemicals upon ecological systems. Lewis Publishers. Boca Raton, FL

    Google Scholar 

  • Larsson A, Haux C, Sjöbeck M (1985) Fish physiology and metal pollution: results and experiences from laboratory and field studies. Ecotoxicol Environ Safety 9:250–281

    Article  CAS  Google Scholar 

  • Lee JS, Lee BG, Luoma SN, Choi HJ, Koh CH, Brown C (2000) Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments. Environ Sci Technol 34:4511–4516

    Article  CAS  Google Scholar 

  • Leland HV, Kuwabara JS (1985) Trace metals. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing Corporation, New York, NY, pp 374–415

    Google Scholar 

  • Lucan-Bouché ML, Biagianti-Risbourg S, Arsac F, Vernte G (1999) An original decontamination process developed by the aquatic oligochaete Tubifex tubifex exposed to copper and lead. Aquat Toxicol 45:9–17

    Article  Google Scholar 

  • Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1929

    Article  CAS  Google Scholar 

  • Maine MA, Suñé NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501

    Article  CAS  Google Scholar 

  • McGeer JC, Brix KV, Skeaf JM et al. (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22(5):1017–1037

    Article  CAS  Google Scholar 

  • Mei B, Puryear JD, Newton RJ (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 247:223–231

    Article  CAS  Google Scholar 

  • Meyer JS, Adams WJ, Brix KV et al. (eds) (2005) Toxicity of dietborne metals to aquatic organisms. SETAC Press, Pensacola, FL

  • Newman MC, Unger MA et al. (2003) Fundamentals of ecotoxicology. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Nussey G, Van Vuren JH, Du Preez HH (2000) Bioaccumulation of chromium, manganese, nickel and lead in the tissues of the moggel, Labeo umbratus (Cyprinidae), from Witbank Dam, Mpumalanga. Water S.A 26:269–284

    CAS  Google Scholar 

  • OECD (Organization for Economic Cooperation, Development) (2004) Sediment water chironomid toxicity test using spiked sediment. OECD Guideline for the Testing of Chemicals

  • Pourang N, Dennis JH, Ghourchian H (2004) Tissue distribution and redistribution of trace elements in shrimp species with the emphasis on the roles of metallothionein. Ecotoxicology 13:519–533

    Article  CAS  Google Scholar 

  • Rand G, Petrocelli SR (1985) Fundamentals of aquatic toxicology. Hemisphere Publishing Corporation, New York, NY

    Google Scholar 

  • Ravera O (2001) Monitoring of the aquatic environment by species accumulator of pollutants: a review. J Limnol 60(Suppl 1):63–78

    Google Scholar 

  • Saha M, Sarkar SK, Bhattacharya B (2005) Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environ Int 32:203–207

    Article  CAS  Google Scholar 

  • Salomons W, De Rooij NM, Kerdijk H, Bril J (1987) Sediments as sources of contaminants?. Hydrobiologia 149:13–30

    Article  CAS  Google Scholar 

  • Schubauer-Berigan MK, Monson PD, West CW, Ankley GT (1995) Influence of pH on the toxicity of ammonia to Chironomus tentans and Lumbriculus variegatus. Environ Toxicol Chem 14:713–718

    Article  CAS  Google Scholar 

  • Scott EF, Li G (1996) Kinetics of chromate reduction by ferrous iron. Environ Sci Technol 30:1614–1617

    Article  Google Scholar 

  • Su Y, Han FX, Maruthi Sridhar BB, Monts DL (2005) Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium on brake fern. Environ Toxicol Chem 24:2019–2026

    Article  CAS  Google Scholar 

  • US EPA (US Environmental Protection Agency) (1991) Method 200.2. Sample preparation procedure for spectrochemical determination of total recoverable elements. Revision 2.3. EPA-600/4-91-010. Environmental Protection Agency, Washington, DC

  • US EPA (US Environmental Protection Agency) (1991) Method 200.9. Determination of trace elements by stabilized temperature graphite furnace Atomic Absorption Spectrometry. EPA-600/4-91-010. Environmental Protection Agency, Washington, DC

  • US EPA (US Environmental Protection Agency) (1991) Method 200.3. Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues. Revision 1.0. EPA-600/4-91-010. Environmental Protection Agency, Washington, DC

  • Van der Putte I, Part P (1982) Oxygen and chromium transfer in perfused gills of rainbow trout (Salmo gairdneri) exposed to hexavalent chromium at two different pH levels. Aquat Toxicol 2:31–45

    Article  Google Scholar 

  • Van Hoof PL, Kukkonern JVK, Landrum PF (2001) Impact of sediment manipulation on the bioaccumulation of polycyclic aromatic hydrocarbons from field-contaminated and laboratory-dosed sediments by an oligochaete. Environ Toxicol Chem 20:1752–1761

    Article  Google Scholar 

  • Vazquez MD, Poschenrieder C, Barcelo J (1987) Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.) Ann Bot 59:427–438

    CAS  Google Scholar 

  • Woodward DF, Brumhaugh WG, De Lonay AJ, Little EE, Smith CE (1994) Effects on rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana. Trans Am Fish Soc 123:51–62

    Article  Google Scholar 

Download references

Acknowledgments

This survey was supported by grants from the Universidad Nacional del Litoral and Agencia para la Promoción Científica y Tecnológica, Argentina (Proyect PICTO No. 13224 UNL-ANPCyT). Chromium concentrations were determinated in Servicio Centralizado de Grandes Instrumentos (CERIDE-CONICET), Laboratory in the Proficiency Testing Program Canadian Association for Environmental Analytical Laboratories (CAEL). We also thank the International Science Editing for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Marchese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchese, M., Gagneten, A.M., Parma, M.J. et al. Accumulation and Elimination of Chromium by Freshwater Species Exposed to Spiked Sediments. Arch Environ Contam Toxicol 55, 603–609 (2008). https://doi.org/10.1007/s00244-008-9139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9139-0

Keywords

Navigation