Skip to main content

Advertisement

Log in

Short-Term Accumulation of Atrazine by Three Plants from a Wetland Model System

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This work describes the accumulation and distribution of the herbicide atrazine in soil, water, and roots from three wetland model systems using the monocots Typha domingensis, Sagittaria lancifolia, and Echinochloa pyramidalis. Results were analyzed from a 33 full factorial experimental design, in order to describe the effect of accumulation of atrazine and times of exposure in the species evaluated. We found that accumulation depends on the species and the herbicide concentration; about 30% was accumulated in soil, 40% in roots, and 10–20% in water. By the end of the experiment, E. pyramidalis accumulated 8.47 mg/l of atrazine and 14.39 mg/l T. domingensis; in all cases, adsorption accounted for 1.4%, fitting a Langmuir model with a k d of 14.47.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accinelli C, Dinelli G, Vicari A, Catizone P (2001) Atrazine and metolachlor degradation in subsoils. Biol Fertil Soils 33:495–500. doi:10.1007/s003740100358

    Article  CAS  Google Scholar 

  • Alvord H, Kadlec R (1995) The interaction of atrazine with wetland sorbents. Ecol Eng 5:469–479. doi:10.1016/0925-8574(95)00036-4

    Article  Google Scholar 

  • Anderson K, Wheeler K, Robinson J, Touvinen O (2002) Atrazine mineralization potential in two wetlands. Water Res 36(19):4785–4794. doi:10.1016/S0043-1354(02)00209-9

    Article  CAS  Google Scholar 

  • Assaf N, Turco R (1994) Influence of carbon and nitrogen application on the mineralization of atrazine and its metabolites in soil. Pesticide Sci 41:41–47. doi:10.1002/ps.2780410108

    Article  CAS  Google Scholar 

  • Baer J, Powers L, Shea P, Stueffer-Powell C (1992) Pore size distribution index as an indicator of atrazine movement in a Crete silt loam soil. Soil Sci 154(6):377–386

    Article  CAS  Google Scholar 

  • Belden J, Phillips T, Coats J (2004) Effect of prairie grass on the dissipation, movement and bioavailability of selected herbicides in prepared soil columns. Environ Toxicol Chem 23:125–132. doi:10.1897/02-513

    Article  CAS  Google Scholar 

  • Blackwell M, Hogan D, Maltby E (2002) Wetlands as regulators of pollutant transport. In: Haygarth P, Jarvis S (eds) Agriculture, hydrology and water quality. CAB International, New York, pp 321–339

  • Blumhorst M, Weber J (1994) Chemical versus microbial degradation of cyanazine and atrazine in soils. Pesticide Sci 42:79–84. doi:10.1002/ps.2780420203

    Article  CAS  Google Scholar 

  • Bouldin J, Farris J, Moore M, Smith S, Cooper C (2006) Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere 65(6):1049–1057. doi:10.1016/j.chemosphere.2006.03.031

    Article  CAS  Google Scholar 

  • Bouldin J, Farris J, Moore M, Smith S, Stephens W, Cooper C (2005) Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms. Environ Toxicol 20(5):487–498. doi:10.1002/tox.20137

    Article  CAS  Google Scholar 

  • Bouquard C, Ouazzani J, Promé J, Michel-Briand Y, Plésiat P (1997) Dechlorination of atrazine by Rhizobium sp Isolate. Appl Environ Microbiol 63:862–866

    CAS  Google Scholar 

  • Briggs G, Bromilow R, Evans A (1982) Relationship between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pesticide Sci 13:495–504. doi:10.1002/ps.2780130506

    Article  CAS  Google Scholar 

  • Brown A (1978) Ecology of pesticides. Wiley, New York, p 525

    Google Scholar 

  • Cejudo-Espinosa E (2006) Acumulación de atrazina en especies vegetales de un humedal del Municipio de Actopan, Veracruz. Master’s thesis, CINVESTAV Mexico

  • Chiou C, Sheng G, Manes M (2001) A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ Sci Technol 35:1437–1444. doi:10.1021/es0017561

    Article  CAS  Google Scholar 

  • Collander R (1960) Cell membranes: their resistance to penetration and their capacity for transport. In: Steward F (ed) Plant physiology: a treatise, vol II. Academic Press, New York, p 758

    Google Scholar 

  • Comber S (1999) Abiotic persistence of atrazine and simazine in water. Pesticide Sci 55:696–702. doi :10.1002/(SICI)1096-9063(199907)55:7<696::AID-PS11>3.0.CO;2-7

  • Czepirski L, Balys M, Nomorowska-Czepirska E (2000) Some generalizations of Langmuir adsorption isotherm. J Chem 3(14)

  • Darmstadt G, Balke N, Price T (1984) Triazine absorption by excised corn root tissue and isolated corn root protoplasts. Pesticide Biochem Physiol 21:10–21. doi:10.1016/0048-3575(84)90069-5

    Article  CAS  Google Scholar 

  • DeLaune R, Devai I, Mulbah C, Crozier C, Lindau C (1997) The Influence of soil redox conditions on atrazine degradation in wetlands. Agric Ecosyst Environ 66:1–87. doi:10.1016/S0167-8809(97)00072-8

    Article  Google Scholar 

  • Entry J, Donelly P, Emmingham W (1995) Atrazine and 2, 4-D mineralization in relation to microbial biomass in soils of young-, second-, and old-growth riparian forests. Appl Soil Ecol 2(2):77–84. doi:10.1016/0929-1393(94)00046-A

    Article  Google Scholar 

  • Fairchild J, Ruessler D, Carlson A (1998) Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ Toxicol Chem 17(9):1830–1834. doi :10.1897/1551-5028(1998)017<1830:CSOFSO>2.3.CO;2

  • Fishwick M, Wright A (1977) Comparison of methods for the extraction of plant lipids. Phytochemistry 16:1507–1510

    Article  CAS  Google Scholar 

  • Gardner G (1989) A stereochemical model for the active site of photosystem II herbicides. Photochem Photobiol 49(3):331–336. doi:10.1111/j.1751-1097.1989.tb04115.x

    Article  CAS  Google Scholar 

  • Gay P, Vellidis G, Delfino J (2006) The attenuation of atrazine and its major degradation products in a restored riparian buffer. Trans ASABE 49(5):1323–1339

    CAS  Google Scholar 

  • Goldsborough L, Crumpton W (1998) Distribution and environmental fate of pesticides in prairie wetlands. Great Plains Res 8:73–95

    Google Scholar 

  • Hance R (1988) Adsorption and bioavailability. In: Grover R (ed) Environmental chemistry of herbicides. CRC Press, Boca Raton, FL, p 216

    Google Scholar 

  • Haney R, Senseman S, Krutz L, Hons F (2002) Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate. Biol Fertil Soils 35:35–40. doi:10.1007/s00374-001-0437-1

    Article  CAS  Google Scholar 

  • Haque R (1975) Role of adsorption in studying the dynamics of pesticides in a soil environment. In: Haque R, Freed V (eds) Environmental dynamics of pesticides. Plenum Press, New York, p 387

    Google Scholar 

  • Hilton H, Nomura N, Kameda S, Yauger W (1976) Some patterns of herbicide and growth regulator intake, persistence and distribution in sugarcane. Arch Environ Contam Toxicol 4(4):385–394. doi:10.1007/BF02221036

    Article  CAS  Google Scholar 

  • Issa S, Wood M (1999) Degradation of atrazine and isoproturon in the unsaturated zone: a study from southern England. Pesticide Sci 55:539–545. doi :10.1002/(SICI)1096-9063(199905)55:5<539::AID-PS970>3.0.CO;2-8

  • Jones T, Estes P (1984) Uptake and phytotoxicity of soil-sorbed atrazine for the submerged aquatic plant, Potamogeton perfoliatus L. Arch Environ Contam Toxicol 13(2):237–241. doi:10.1007/BF01055882

    Article  CAS  Google Scholar 

  • LaGrega M, Buckingham D, Evans J (1996) Gestión de residuos tóxicos: tratamiento, eliminación y recuperación de suelos. Vol. 1. McGraw-Hill, New York, p 1958

    Google Scholar 

  • Lopez-Martinez N, Marshall G, De Prado R (1997) Resistance of barnyardgrass (Echinochloa crus-galli) to atrazine and quinclorac. Pesticide Sci 51:171–175. doi :10.1002/(SICI)1096-9063(199710)51:2<171::AID-PS612>3.0.CO;2-7

  • Maddison M, Soosaar K, Lohmus K, Mander U (2005) Cattail population in wastewater treatment wetlands in Estonia: biomass production, retention of nutrients and heavy metals in phytomass. J Environ Sci Health 40:1157–1166. doi:10.1081/ESE-200055624

    Article  CAS  Google Scholar 

  • Mandelbaum R, Wackett L, Allan D (1993) Rapid hydrolysis of atrazine to hydroxyatrazine by soil bacteria. Environ Sci Technol 27:1943–1946. doi:10.1021/es00046a028

    Article  CAS  Google Scholar 

  • Martin-Neto L, Gomez-Traghetta D, Vaz C, Crestana S, Sposito G (2001) Organic compound in the environment: on the interaction mechanism of atrazine and hydroxyatrazine with humic substances. J Environ Qual 30:520–525

    CAS  Google Scholar 

  • Mersie W, Seybold C, Tsegaye T (1999) Movement, adsorption and mineralization of atrazine in two soils with and without switchgrass (Panicum virgatum) roots. Eur J Soil Sci 50(2):343–349. doi:10.1046/j.1365-2389.1999.00229.x

    Article  CAS  Google Scholar 

  • Neurath S, Sadeghi A, Shirmohammadi A, Isensee A, Torrents A (2004) Atrazine distribution measured in soil and leachate following infilration conditions. Chemosphere 54:489–496. doi:10.1016/j.chemosphere.2003.08.017

    Article  CAS  Google Scholar 

  • Raveton M, Ravanel P, Serre A, Nurit F, Tissut M (1997) Kinetics of uptake and metabolism of atrazine in model plant systems. Pesticide Sci 49:157–163. doi :10.1002/(SICI)1096-9063(199702)49:2<157::AID-PS517>3.0.CO;2-M

  • SAGARPA. Secretaria de Agricultura, Ganaderia, Desarrollo Rural y Pesca. Available from http://www.sagarpa.gob.mx. Accessed June 2005

  • Sandmann E, Loos M (1984) Enumeration of 2, 4-d-degrading microorganisms in soils and crop plant rhizospheres using indicator media; high populations associated with sugarcane (Saccharum officinarum). Chemosphere 13(9):1073–1084. doi:10.1016/0045-6535(84)90066-3

    Article  CAS  Google Scholar 

  • Schroll R, Bierling B, Cao G et al (1994) Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere 28(2):297–303

    Article  CAS  Google Scholar 

  • Shimabukuro R, Kadunce R, Frear D (1966) Dealkylation of atrazine in mature pea plants. J Agric Food Chem 14(4):392–395. doi:10.1021/jf60146a017

    Article  CAS  Google Scholar 

  • Sicbaldi F, Sacchi G, Trevisan M, Del Re A (1997) Root uptake and xylem translocation of pesticides from different chemical classes. Pesticide Sci 50:111–119. doi :10.1002/(SICI)1096-9063(199706)50:2<111::AID-PS573>3.0.CO;2-3

  • Singh N, Megharaj M, Kookana R, Naidu R, Sethunathan N (2004) Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere 56:257–263. doi:10.1016/j.chemosphere.2004.03.010

    Article  CAS  Google Scholar 

  • Solomon K, Baker D, Richards P et al (1996) Ecological risk assesment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76. doi :10.1897/1551-5028(1996)015<0031:ERAOAI>2.3.CO;2

  • Sorrell B, Mendelssohn I, McKee K, Woods R (2000) Ecophysiology of wetland plant roots: a modelling comparison of aeration in relation to species distribution. Ann Bot 86:675–685. doi:10.1006/anbo.2000.1173

    Article  Google Scholar 

  • Steele G, Johnson H, Sandstrom M, Capel P, Barbash J (2008) Occurrence and fate of pesticides in four contrasting agricultural settings in the United States. J Environ Qual 37:1116–1132. doi:10.2134/jeq2007.0166

    Article  CAS  Google Scholar 

  • Stolpe N, Shea P (1995) Alachlor and atrazine degradation in Nebraska soil and underlying sediments. Soil Sci 160:359–370. doi:10.1097/00010694-199511000-00005

    Article  CAS  Google Scholar 

  • Su Y, Zhu Y (2006) Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. Environ Pollut 139:32–39. doi:10.1016/j.envpol.2005.04.035

    Article  CAS  Google Scholar 

  • Tames R, Hance J (1969) The adsorption of herbicides by roots. Plant Soil 2:21–226

    Google Scholar 

  • Tasli S, Patty L, Boetti H et al (1996) Persistence and leaching of atrazine in corn culture in the experimental site of La Côte Saint André (Isère, France). Arch Environ Contam Toxicol 30:203–212. doi:10.1007/BF00215799

    Article  CAS  Google Scholar 

  • Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11(1):33–39

    Article  CAS  Google Scholar 

  • Welhouse G, Bleam W (1993) Atrazine hydrogen-bonding potentials. Environ Sci Technol 27:494–500. doi:10.1021/es00040a007

    Article  CAS  Google Scholar 

  • Whitwell T, Briggs J, Riley M, Camper D (1997) Fate of herbicides in container nursery runoff. Available from www.clemson.edu/hort/sctop/asec/asec-01.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Cejudo-Espinosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cejudo-Espinosa, E., Ramos-Valdivia, A.C., Esparza-García, F. et al. Short-Term Accumulation of Atrazine by Three Plants from a Wetland Model System. Arch Environ Contam Toxicol 56, 201–208 (2009). https://doi.org/10.1007/s00244-008-9193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9193-7

Keywords

Navigation