Skip to main content
Log in

Assessment of Landfill Leachate Toxicity Reduction After Biological Treatment

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In the present article, the efficiency of biological treatment of landfill leachates was evaluated by implementation of physicochemical characterisation and a complex toxicity assessment. An array of toxicity tests using bacterium Vibrio fischeri, alga Desmodesmus subspicatus, crustacean Daphnia magna, and embryo of fish Danio rerio, as well as unconventional methods using biochemical biomarkers (protein content, enzymes cholinesterase, and glutathione-S-transferase), were employed. Toxicity of leachates varied depending on the season of collection in relation to their different physicochemical characteristics. Uncommon effects of leachates on organisms, such as hormetic-like increases of algal growth and reproduction of daphnids, were identified. New approaches using the activities of enzymes were found unsuitable for routine hazard assessment of leachates. Although physicochemical parameters and toxicity decreased significantly after biological treatment, the effluents did not meet the demands of the current Slovenian legislation; thus, the existing biological treatment was found inappropriate. The development of advanced treatment techniques for landfill leachates is thus encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assmuth T, Penttilä S (1995) Characteristics, determinants and interpretations of acute lethality in daphnids exposed to complex waste leachates. Aquat Toxicol 31:125–141

    Article  CAS  Google Scholar 

  • Baun A, Ledin A, Reitzel LA, Bjerg PL, Christensen TH (2004) Xenobiotic organic compounds in leachates from ten Danish MSW landfills: chemical analysis and toxicity tests. Water Res 38:3845–3858

    Article  CAS  Google Scholar 

  • Bernard C, Guido P, Colin J, Le Dû-Delepierre A (1996) Estimation of the hazard of landfills through toxicity testing of leachates. I. Determination of leachate toxicity with a battery of acute tests. Chemosphere 33:2303–2320

    Article  Google Scholar 

  • Bernard C, Colin JR, Le Dû-Delepierre A (1997) Estimation of the hazard of landfills through toxicity testing of leachates. 2. Comparison of physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests. Chemosphere 35:2783–2796

    Article  Google Scholar 

  • Bila DM, Montalvao AF, Silva AC, Dezotti M (2005) Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement. J Hazard Mater 117:235–242

    Article  CAS  Google Scholar 

  • Bodar CWM, Van Leeuwen CJ, Voogt PA, Zandee DI (1988) Effect of cadmium on the reproduction strategy of Daphnia magna. Aquat Toxicol 12:301–310

    Article  CAS  Google Scholar 

  • Booth LH, O’Halloran K (2001) A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorous insecticides diazinon and chlorpyrifos. Environ Toxicol Chem 20:2494–2502

    CAS  Google Scholar 

  • Brown RJ, Galloway TS, Lowe D, Browne MA, Dissanayake A, Jones MB et al (2004) Differential sensitivity of three marine invertebrates to copper assessed using multiple biomarkers. Aquat Toxicol 66:267–278

    Article  CAS  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    Article  CAS  Google Scholar 

  • Clément B, Merlin G (1995) The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed. Sci Total Environ 170:71–79

    Article  Google Scholar 

  • Dave G, Nilsson E (2005) Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite. Aquat Toxicol 73:11–30

    Article  CAS  Google Scholar 

  • Eurostat (2010). Municipal waste generation and treatment, by type of treatment method (kg per capita). Available at: http://epp.eurostat.ec.europa.eu/portal/page/portal/waste/data/wastemanagement/waste_treatment. Accessed: January 15, 2010

  • Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on daphnia survival, growth, and reproduction. Chemosphere 61:200–207

    Article  CAS  Google Scholar 

  • Goi A, Veressinina Y, Trapido M (2009) Combination of ozonation and the Fenton processes for landfill leachate treatment: evaluation of treatment efficiency. Ozone: Sci Eng: J Int Ozone Assoc 31:28–36

    Article  CAS  Google Scholar 

  • Goi A, Veressinina Y, Trapido M (2010) Fenton process for landfill leachate treatment: evaluation of biodegradability and toxicity. J Environ Eng 136:46–53

    Article  CAS  Google Scholar 

  • Guilhermino L, Barros P, Silva MC, Soares AMVM (1998) Should the use of inhibition of cholinesterases as a specific biomarker for organophosphate and carbamate pesticides be questioned? Biomarkers 3:157–163

    Article  CAS  Google Scholar 

  • Hammers-Wirtz M, Ratte HT (2000) Offspring fitness in daphnia: Is the daphnia reproduction test appropriate for extrapolating effects on the population level? Environ Toxicol Chem 19:1856–1866

    CAS  Google Scholar 

  • Hebert PDN (1978) The population biology of daphnia (Crustacea: Daphnidae). Biol Rev 53:387–426

    Article  Google Scholar 

  • International Organisation for Standardisation (ISO) 10260 (1992) Water quality―Measurement of biochemical parameters―Spectrometric determination of the chlorophyll-a concentration. ISO, Geneva, Switzerland

  • Isidori M, Lavorgna M, Nardelli A, Parrella A (2003) Toxicity identification evaluation of leachates from municipal solid waste landfills: a multispecies approach. Chemosphere 52:85–94

    Article  CAS  Google Scholar 

  • Jemec A, Tišler T, Drobne D, Sepčić K, Fournier D, Trebše P (2007a) Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere 68:1408–1418

    Article  CAS  Google Scholar 

  • Jemec A, Drobne D, Tišler T, Trebše P, Roš M, Sepčić K (2007b) The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test. Comp Biochem Physiol C 144:303–309

    Google Scholar 

  • Jemec A, Drobne D, Tišler T, Sepčić K (2010) Biochemical biomarkers in environmental studies—lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environ Sci Pollut 17:571–581

    Article  CAS  Google Scholar 

  • Jensen DL, Christensen TH (1999) Colloidal and dissolved metals in leachates from four Danish landfills. Water Res 33:2139–2147

    Article  CAS  Google Scholar 

  • Kammann U, Biselli S, Hühnerfuss H, Reineke N, Theobald N, Vobach M et al (2004) Genotoxic and teratogenic potential of marine sediment extracts investigated with comet assay and zebrafish test. Environ Pollut 132:279–287

    Article  CAS  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Knowles CO, McKee MJ (1987) Protein and nucleic acid content in Daphnia magna during chronic exposure to cadmium. Ecotox Environ Safe 13:290–300

    Article  CAS  Google Scholar 

  • Lambolez L, Vasseur P, Ferard JF, Gisbert T (1994) The environmental risks of industrial waste disposal: an experimental approach including acute and chronic toxicity studies. Ecotox Environ Safe 28:317–328

    Article  CAS  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C 149:196–209

    CAS  Google Scholar 

  • Marttinen SK, Kettunen RH, Sormunen KM, Soimasuo RM, Rintala JA (2002) Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46:851–858

    Article  CAS  Google Scholar 

  • Official Gazette of Republic of Slovenia (2008) Decree on the emission of substances in the discharge of landfill leachate, ULRS 62/2008 196–215 [in Slovene]

  • Rodriguez P, Martinez-Madrid M, Cid A (2006) Ecotoxicological assessment of effluents in the Basque country (Northern Spain) by acute and chronic toxicity tests using Daphnia magna Straus. Ecotoxicology 15:559–572

    Article  CAS  Google Scholar 

  • Romani R, Atognelli C, Baldracchini F, De Santis A, Isani G, Giovannini E et al (2003) Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem Biol Interact 145:321–332

    Article  CAS  Google Scholar 

  • Rutherford LA, Matthews SL, Doe KG, Julien GRJ (2000) Aquatic toxicity and environmental impact of leachate discharges from a municipal landfill. Water Qual Res J Can 35:39–57

    CAS  Google Scholar 

  • Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment: applications beyond acute toxicity testing. Environ Sci Pollut 15:394–404

    Article  CAS  Google Scholar 

  • Silva AC, Dezotti M, Sant’Anna GL (2004) Treatment and detoxification of a sanitary landfill leachate. Chemosphere 55:207–214

    Article  CAS  Google Scholar 

  • Slomczynska B, Wasowski J, Slomczynski T (2004) Effect of advanced oxidation processes on the toxicity of municipal landfill leachates. Water Sci Technol 49:273–277

    CAS  Google Scholar 

  • Thomas DJL, Tyrrel SF, Smith R, Farrow S (2009) Bioassays for the evaluation of landfill leachate toxicity. J Toxicol Environ Health B 12:83–105

    Article  Google Scholar 

  • Tišler T, Zagorc-Končan J (1999) Toxicity evaluation of wastewater from the pharmaceutical industry to aquatic organisms. Water Sci Technol 39:71–76

    Google Scholar 

  • Tišler T, Zagorc-Končan J (2007) The “whole-effluent” toxicity approach. Int J Environ Pollut 31:3–12

    Article  Google Scholar 

  • Tišler T, Jemec A, Mozetič B, Trebše P (2009) Hazard identification of imidacloprid to aquatic environment. Chemosphere 76:907–914

    Article  Google Scholar 

  • Ward ML, Bitton G, Townsend T, Booth M (2002) Determining toxicity of leachates from Florida municipal solid waste landfills using a battery-of-tests approach. Environ Toxicol 17:258–266

    Article  CAS  Google Scholar 

  • Žgajnar Gotvajn A, Derco J, Tišler T, Cotman M, Zagorc-Končan J (2009) Removal of organics from different types of landfill leachate by ozonation. Water Sci Technol 60:597–603

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Polona Zevnik, Emil Meden, and Tina Bobnar for technical assistance. The authors also gratefully acknowledge the financial support of the Ministry of Education, Science and Technology of the Republic Slovenia through research programs P2-0150 and P2-191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Jemec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jemec, A., Tišler, T. & Žgajnar-Gotvajn, A. Assessment of Landfill Leachate Toxicity Reduction After Biological Treatment. Arch Environ Contam Toxicol 62, 210–221 (2012). https://doi.org/10.1007/s00244-011-9703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-011-9703-x

Keywords

Navigation