Skip to main content
Log in

Hölder Continuity and Optimal Control for Nonsmooth Elliptic Problems

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

The well known De Giorgi result on Hölder continuity for solutions of the Dirichlet problem is re-established for mixed boundary value problems, provided that the underlying domain is a Lipschitz domain and the border between the Dirichlet and the Neumann boundary part satisfies a very general geometric condition. Implications of this result for optimal control theory are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert, J.-J., Raymond, J.-P.: Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 18, 235–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amann, H.: Dynamic theory of quasilinear parabolic equations: Abstract evolution equations. Nonlinear Anal. Theory Methods Appl. 12, 895–919 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.-J. (ed.) Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Mathematik, vol. 133, pp. 9–126. Teubner, Stuttgart (1993)

    Google Scholar 

  4. Auscher, P., Tchamitchian, P.: Square root problem for divergence operators and related topics, Astérisque, 249 (1998)

  5. Bandelow, U., Kaiser, H.-C., Koprucki, T., Rehberg, J.: Modeling and simulation of strained quantum wells in semiconductor lasers. In: Jäger, W., Krebs, H.-J. (eds.) Mathematics—Key Technology for the Future. Joint Projects Between Universities and Industry, pp. 377–390. Springer, Berlin/Heidelberg (2003)

    Google Scholar 

  6. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I-species persistence. J. Math. Biol. 51, 75–113 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonnans, J., Casas, E.: An extension of Pontryagin’s principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities. SIAM J. Control Optim. 33, 274–298 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Casas, E., Mateos, M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21, 67–100 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Casas, E., Mateos, M.: Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40, 1431–1454 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Casas, E., Tröltzsch, F., Unger, A.: Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38, 1369–1391 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Casas, E., Tröltzsch, F., de los Reyes, J.C.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19, 616–643 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Y.Z., Wu, L.C.: Second Order Elliptic Equations and Elliptic Systems. Translations of Mathematical Monographs, vol. 174. Am. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1979)

    Google Scholar 

  15. De Giorgi, E.: Sulla differenziabilita e l’analiticita delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino, P.I. III. 3, 25–43 (1957)

    Google Scholar 

  16. Dieudonné, J.: Grundzüge der Modernen Analysis, vol. 1. VEB Deutscher Verlag der Wissenschaften, Berlin (1971)

    MATH  Google Scholar 

  17. Duderstadt, F., Hömberg, D., Khludnev, A.M.: A mathematical model for impulse resistance welding. Math. Methods Appl. Sci. 26, 717–737 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Elschner, J., Rehberg, J., Schmidt, G.: Optimal regularity for elliptic transmission problems including C 1 interfaces. Interfaces Free Bound. 9, 233–252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC, Boca Raton (1992)

    MATH  Google Scholar 

  20. Franzone, P.C., Guerri, L., Rovida, S.: Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulation. J. Math. Biol. 28, 121–176 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gajewski, H.: Analysis und Numerik von Ladungstransport in Halbleitern (Analysis and numerics of carrier transport in semiconductors). Mitt. Ges. Angew. Math. Mech. 16, 35–57 (1993)

    MathSciNet  Google Scholar 

  22. Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin (1974)

    MATH  Google Scholar 

  23. Giusti, E.: Metodi Diretti nel Calcolo delle Variazioni. Unione Matematica Italiana, Bologna (1994)

    MATH  Google Scholar 

  24. Glitzky, A., Hünlich, R.: Global estimates and asymptotics for electro–reaction–diffusion systems in heterostructures. Appl. Anal. 66, 205–226 (1997)

    Article  MathSciNet  Google Scholar 

  25. Griepentrog, J.A.: Linear elliptic boundary value problems with non-smooth data: Campanato spaces of functionals. Math. Nachr. 243, 19–42 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Griepentrog, J.A., Recke, L.: Linear elliptic boundary value problems with non-smooth data: Normal solvability on Sobolev-Campanato spaces. Math. Nachr. 225, 39–74 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Griepentrog, J.A., Kaiser, H.-C., Rehberg, J.: Heat kernel and resolvent properties for second order elliptic differential operators with general boundary conditions on L p. Adv. Math. Sci. Appl. 11, 87–112 (2001)

    MATH  MathSciNet  Google Scholar 

  28. Griepentrog, J.A., Gröger, K., Kaiser, H.C., Rehberg, J.: Interpolation for function spaces related to mixed boundary value problems. Math. Nachr. 241, 110–120 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  30. Gröger, K.: A W 1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283, 679–687 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gröger, K., Rehberg, J.: Resolvent estimates in W −1,p for second order elliptic differential operators in case of mixed boundary conditions. Math. Ann. 285, 105–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Haller-Dintelmann, R., Rehberg, J.: Maximal parabolic regularity for divergence operators including mixed boundary conditions, WIAS-preprint 1288 (2008)

  33. Haller-Dintelmann, R., Kaiser, H.-C., Rehberg, J.: Elliptic model problems including mixed boundary conditions and material heterogeneities. J. Math. Pures Appl. (9) 89(1), 25–48 (2008)

    MATH  MathSciNet  Google Scholar 

  34. Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer, Berlin (1980) (Reprint of the corr. print. of the 2nd edn.)

    Google Scholar 

  35. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Pure and Applied Mathematics, vol. 88. Academic Press, New York (1980)

    MATH  Google Scholar 

  36. Koprucki, T., Kaiser, H.-C., Fuhrmann, J.: Electronic states in semiconductor nanostructures and upscaling to semi-classical models. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 367–396. Springer, Berlin (2006)

    Google Scholar 

  37. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Mathematics in Science and Engineering. Academic Press, New York (1968)

    MATH  Google Scholar 

  38. Leguillon, D., Sanchez-Palenzia, E.: Computation of Singular Solutions in Elliptic Problems and Elasticity. Wiley, Chichester (1987)

    MATH  Google Scholar 

  39. Li, Y., Liu, J., Voskoboynikov, O., Lee, C., Sze, S.: Electron energy level calculations for cylindrical narrow gap semiconductor quantum dot. Comput. Phys. Commun. 140, 399–404 (2001)

    Article  MATH  Google Scholar 

  40. Liebermann, G.M.: Mixed boundary value problems for elliptic and parabolic differential equations of second order. J. Math. Anal. Appl. 113, 422–440 (1986)

    Article  MathSciNet  Google Scholar 

  41. Liebermann, G.M.: Optimal Hölder regularity for mixed boundary value problems. J. Math. Anal. Appl. 143, 572–586 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  42. Maz’ya, V.: Sobolev Spaces. Springer, Berlin (1985)

    Google Scholar 

  43. Mitrea, I., Mitrea, M.: The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains. Trans. Am. Math. Soc. 359, 4143–4182 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Prignet, A.: Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures. Rendiconti di Mat. 15, 321–337 (1995)

    MATH  MathSciNet  Google Scholar 

  45. Prüss, J.: Maximal regularity for evolution equations in L p-spaces. Conf. Semin. Mat. Univ. Bari 285, 1–39 (2002)

    Google Scholar 

  46. Selberherr, S.: Analysis and Simulation of Semiconductors. Springer, Wien (1984)

    Google Scholar 

  47. Serrin, J.: Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 385–387 (1964)

    MATH  MathSciNet  Google Scholar 

  48. Sobolevskij, P.E.: Equations of parabolic type in a Banach space. Am. Math. Soc. Transl. II 49, 1–62 (1966)

    MATH  Google Scholar 

  49. Sommerfeld, A.: Electrodynamics. Lectures on Theoretical Physics, vol. III. Academic Press, New York (1952)

    MATH  Google Scholar 

  50. Sommerfeld, A.: Thermodynamics and Statistical Mechanics. Lectures on Theoretical Physics, vol. V. Academic Press, New York (1956)

    MATH  Google Scholar 

  51. Stampacchia, G.: Problemi al contorno ellittici, con dati discontinui, dotati di soluzioni hölderiane. Ann. Mat. Pura Appl. IV 51, 1–37 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  52. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15, 189–258 (1965)

    MATH  MathSciNet  Google Scholar 

  53. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  54. Triebel, H.: On spaces of B s∞,q and C s type. Math. Nachr. 85, 75–90 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  55. Tukia, P.: The planar Schönflies theorem for Lipschitz maps. Ann. Acad. Sci. Fenn. Ser. A I 5, 49–72 (1980)

    MATH  MathSciNet  Google Scholar 

  56. Wang, W., Hwang, T., Lin, W., Liu, J.: Numerical methods for semiconductor heterostructures with band nonparabolicity. J. Comput. Phys. 190, 141–158 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  57. Weisbuch, C., Vinter, B.: Quantum Semiconductor Structures: Fundamentals and Applications. Academic Press, Boston (1991)

    Google Scholar 

  58. Ziemer, W.P.: Weakly Differentiable Functions. Springer, Berlin (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller-Dintelmann, R., Meyer, C., Rehberg, J. et al. Hölder Continuity and Optimal Control for Nonsmooth Elliptic Problems. Appl Math Optim 60, 397–428 (2009). https://doi.org/10.1007/s00245-009-9077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-009-9077-x

Keywords

Navigation