Skip to main content

Advertisement

Log in

Spatial Dominance and Inorganic Carbon Assimilation by Conspicuous Autotrophic Biofilms in a Physical and Chemical Gradient of a Cold Sulfurous Spring: The Role of Differential Ecological Strategies

  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2005

Abstract

The community composition and ecophysiological features of microbial autotrophic biofilms were studied in Fuente Podrida, a cold sulfur spring located in East Spain. We demonstrated how different ecophysiological strategies, such as resistance and/or utilization of sulfide and oxygen, light adaptation, or resistance to high water flow, allow each of the microorganisms described to efficiently colonize several areas within the environmental gradient. In the zone of the spring constantly influenced by sulfide-rich waters, biofilms were formed by purple bacteria, cyanobacteria, and filamentous colorless sulfur bacteria. Purple bacteria showed higher photosynthetic efficiency per pigment unit than cyanobacteria, although they were dominant only in anoxic areas. Two filamentous cyanobacteria, strain UVFP1 and strain UVFP2, were also abundant in the sulfide-rich area. Whereas the cyanobacterial strain UVFP2 shows a strategy based on the resistance to sulfide of oxygenic photosynthesis, strain UVFP1, additionally, has the capacity for sulfide-driven anoxygenic photosynthesis. Molecular phylogenetic analyses cluster the benthic strain UVFP1 with genus Planktothrix, but with no particular species, whereas UVFP2 does not closely cluster with any known cyanobacterial species. The colorless sulfur bacterium Thiothrix sp. extended throughout the zone in which both sulfide and oxygen were present, exhibiting its capacity for chemolithoautotrophic dark carbon fixation. Downstream from the source, where springwater mixes with well-oxygenated stream water and sulfide disappears, autotrophic biofilms were dominated by diatoms showing higher photosynthetic rates than cyanobacteria and, by a lesser extent, by a sulfide-sensitive cyanobacterium (strain UVFP3) well adapted to low light availability, although in the areas of higher water velocity far from the river shore, the dominance shifted to crust-forming cyanobacteria. Both types of microorganisms were highly sensitive to sulfide impeding them from occupying sulfide-rich areas of the spring. Sulfide, oxygen, light availability, and water velocity appear as the main factors structuring the autotrophic community of Fuente Podrida spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. M Aboal MA Puig G Soler (1996) ArticleTitleDiatom assemblages in some Mediterranean temporary streams in southeastern Spain Arch Hydrobiol 136 504–527

    Google Scholar 

  2. W Admiraal H Peletier (1979) ArticleTitleSulphide tolerance of benthic diatoms in relation to their distribution in an estuary Br Phycol J 14 185–196

    Google Scholar 

  3. B Arieli Y Shahak D Taglicht G Hauska E Padan (1994) ArticleTitlePurification and characterization of sulfide–quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica J Biol Chem 269 5705–5711 Occurrence Handle8119908 Occurrence Handle1:STN:280:DyaK2c7msV2itQ%3D%3D

    PubMed  CAS  Google Scholar 

  4. DE Caldwell SJ Caldwell TJ Tiedje (1975) ArticleTitleEcological study of sulfur-oxidizing bacteria from littoral zone of a Michigan lake and a sulfur spring in Florida Plant Soil 43 101–114 Occurrence Handle10.1007/BF01928479

    Article  Google Scholar 

  5. A Camacho F García-Pichel E Vicente RW Castenholz (1996) ArticleTitleAdaptation to sulfide and to the underwater light field in three cyanobacterial isolates from Lake Arcas (Spain) FEMS Microbiol Ecol 21 293–301 Occurrence Handle1:CAS:528:DyaK28Xnt1Kqtr0%3D

    CAS  Google Scholar 

  6. A Camacho E Vicente (1998) ArticleTitleCarbon photoassimilation by sharply stratified phototrophic communities at the chemocline of Lake Arcas (Spain) FEMS Microbiol Ecol 25 11–22 Occurrence Handle1:CAS:528:DyaK1cXislymsQ%3D%3D

    CAS  Google Scholar 

  7. A Camacho E Vicente MR Miracle (2000) ArticleTitleEcology of a deep-living Oscillatoria (=Planktothrix) population in the sulphide-rich waters of a Spanish karstic lake Arch Hydrobiol 148 333–355 Occurrence Handle1:CAS:528:DC%2BD3cXkvFaqsr0%3D

    CAS  Google Scholar 

  8. J Cambra M Aboal (1992) ArticleTitleFilamentous green algae of Spain: distribution and ecology Limnetica 8 213–220

    Google Scholar 

  9. RW Castenholz (1976) ArticleTitleThe effect of sulfide on the bluegreen algae of hot springs. I. New Zealand and Iceland J Phycol 12 54–68 Occurrence Handle1:CAS:528:DyaE28XktFCrsbw%3D

    CAS  Google Scholar 

  10. RW Castenholz (2001) Phylum BX. Cyanobacteria. Oxygenic phototrophic bacteria DR Boone RW Castenholz (Eds) Bergey's Manual of Systematic Bacteriology, vol. 1 Springer-Verlag New York

    Google Scholar 

  11. RW Castenholz HC Utkilen (1984) ArticleTitlePhysiology of sulfide tolerance in a thermophilic Oscillatoria Arch Microbiol 138 299–305 Occurrence Handle1:CAS:528:DyaL2cXlt1Ogtb8%3D

    CAS  Google Scholar 

  12. JD Cline (1969) ArticleTitleSpectrophotometric determination of hydrogen sulfide in natural waters Limnol Oceanogr 14 454–458 Occurrence Handle1:CAS:528:DyaF1MXksFegu70%3D Occurrence Handle10.4319/lo.1969.14.3.0454

    Article  CAS  Google Scholar 

  13. Y Cohen BB Jørgensen E Padan M Shilo (1975) ArticleTitleSulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica Nature 257 489–492 Occurrence Handle10.1038/257489a0 Occurrence Handle1:CAS:528:DyaE28XitV2g

    Article  CAS  Google Scholar 

  14. Y Cohen BB Jørgensen NP Revsbech R Poplawski (1986) ArticleTitleAdaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria Appl Environ Microbiol 51 398–407 Occurrence Handle1:CAS:528:DyaL28XhtVKmt74%3D Occurrence Handle16346996

    CAS  PubMed  Google Scholar 

  15. R Wit ParticleDe WMM Boekel ParticleVan H Gemerden ParticleVan (1988) ArticleTitleGrowth of the cyanobacterium Microcoleus chthonoplastes on sulfide FEMS Microbiol Ecol 53 203–210

    Google Scholar 

  16. R Wit ParticleDe H Gemerden ParticleVan (1987) ArticleTitleChemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa reseopersicina FEMS Microbiol Ecol 45 117–126

    Google Scholar 

  17. S Douglas DD Douglas (2001) ArticleTitleStructural and geomicrobiological characteristics of a microbial community from a cold sulfide spring Geomicrobiol J 18 401–422 Occurrence Handle10.1080/014904501753210567

    Article  Google Scholar 

  18. E Epping M Kuhl (2000) ArticleTitleThe responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain) Environ Microbiol 2 465–474 Occurrence Handle10.1046/j.1462-2920.2000.00129.x Occurrence Handle11234934 Occurrence Handle1:CAS:528:DC%2BD3cXntFOgt78%3D

    Article  PubMed  CAS  Google Scholar 

  19. P Freytet EP Verrecchia (1998) ArticleTitleFreshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae Sedimentology 45 535–563 Occurrence Handle10.1046/j.1365-3091.1998.00155.x

    Article  Google Scholar 

  20. F García-Pichel RW Castenholz (1990) ArticleTitleComparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium Arch Microbiol 153 344–351

    Google Scholar 

  21. S Garlick A Oren E Padan (1977) ArticleTitleOccurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria J Bacteriol 129 623–629 Occurrence Handle402355 Occurrence Handle1:CAS:528:DyaE2sXhtVehtLg%3D

    PubMed  CAS  Google Scholar 

  22. H Germain (1981) Flore des Diatomees Boubée Paris

    Google Scholar 

  23. HL Golterman RS Clymo MAM Ohnstad (1978) Methods for Physical and Chemical Analysis of Freshwaters. IBP Handbook No. 8 Blackwell Oxford

    Google Scholar 

  24. MW Hahn (2003) ArticleTitleIsolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones Appl Environ Microbiol 69 5248–5254 Occurrence Handle12957910 Occurrence Handle1:CAS:528:DC%2BD3sXntlSjtbs%3D

    PubMed  CAS  Google Scholar 

  25. HW Jannasch MJ Mottl (1985) ArticleTitleGeomicrobiology of deep-sea hydrothermal vents Science 229 717–725 Occurrence Handle1:CAS:528:DyaL2MXlsVKkt7c%3D Occurrence Handle17841485

    CAS  PubMed  Google Scholar 

  26. RE Johnson NC Tuchman CG Peterson (1997) ArticleTitleChanges in the vertical microdistribution of diatoms within a developing periphyton mat J N Am Benthol Soc 16 503–519

    Google Scholar 

  27. BB Jørgensen (1982) ArticleTitleEcology of the bacteria of the sulphur cycle with special reference to anoxic–oxic interface environments Philos Trans R Soc Lond B 298 543–561

    Google Scholar 

  28. BB Jørgensen Y Cohen NP Revsbech (1986) ArticleTitleTransition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat Appl Environ Microbiol 51 408–417 Occurrence Handle16346997

    PubMed  Google Scholar 

  29. BB Jørgensen JG Kuenen Y Cohen (1979) ArticleTitleMicrobial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai) Limnol Oceanogr 24 799–822

    Google Scholar 

  30. BB Jørgensen NP Revsbech (1983) ArticleTitleColorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp. in O2 and H2S microgradients Appl Environ Microbiol 45 1261–1270 Occurrence Handle16346268

    PubMed  Google Scholar 

  31. Krammer, K, Lange-Bertalot, H (1986–1988–1991) Teil 2: Bacillariophyceae. (2/1): Naviculaceae; (2/2): Bacillariaceae, Epithemiaceae, Surirellaceae; (2/3): Centrales, Fragilariaceae, Eunotiaceae; and (2/4): Achnanthaceae. In: Ettl, H, Gerloff, J, Heynig, H, Mollenhauer, D (Eds.) Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Jena

  32. JG Kuenen LA Robertson H Gemerden ParticleVan (1985) ArticleTitleMicrobial interactions among aerobic and anaerobic sulfur-oxidizing bacteria Adv Microb Ecol 8 1–60 Occurrence Handle1:CAS:528:DyaL2MXltVWms7Y%3D

    CAS  Google Scholar 

  33. DJ Lane (1991) 16S/23S rRNA sequencing E Stackebrandt M Goodfellow (Eds) Nucleic Acid Techniques in Bacterial Systematics John Wiley and Sons New York, NY 115–175

    Google Scholar 

  34. RG Mattison M Abbiati PR Dando MF Fitzsimons SM Pratt AJ Southward EC Southward (1998) ArticleTitleChemoautotrophic microbial mats in submarine caves with hydrothermal sulphidic springs at Cape Palinuro, Italy Microb Ecol 35 58–71 Occurrence Handle10.1007/s002489900060 Occurrence Handle9459659 Occurrence Handle1:CAS:528:DyaK1cXks1WgsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  35. M Mussmann HN Schulz B Strotmann T Kjaer LP Nielsen RA Rossello-Mora RI Amann BB Jorgensen (2003) ArticleTitlePhylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments Environ Microbiol 5 523–533 Occurrence Handle10.1046/j.1462-2920.2003.00440.x Occurrence Handle12755720 Occurrence Handle1:CAS:528:DC%2BD3sXltleisLs%3D

    Article  PubMed  CAS  Google Scholar 

  36. PH Nielsen MA Muro Particlede JL Nielsen (2000) ArticleTitleStudies on the in situ physiology of Thiothrix spp. present in activated sludge Environ Microbiol 2 389–398 Occurrence Handle11234927 Occurrence Handle1:CAS:528:DC%2BD3cXntFOgtro%3D

    PubMed  CAS  Google Scholar 

  37. A Oren E Padan S Malkin (1979) ArticleTitleSulfide inhibition of photosystem II in cyanobacteria (blue-green algae) and tobacco chloroplasts Biochem Biophys Acta 546 270–279 Occurrence Handle109120 Occurrence Handle1:CAS:528:DyaE1MXitVSlsrs%3D

    PubMed  CAS  Google Scholar 

  38. J Overmann N Pfennig (1992) ArticleTitleContinuous chemotrophic growth and respiration of Cromatiaceae species at low oxygen concentrations Arch Microbiol 158 59–67 Occurrence Handle10.1007/BF00249067 Occurrence Handle1:CAS:528:DyaK38XlsVOjtbk%3D

    Article  CAS  Google Scholar 

  39. AF Post B Arieli (1997) ArticleTitlePhotosynthesis of Prochlorothrix hollandica under sulfide-rich anoxic conditions Appl Environ Microbiol 63 3507–3511 Occurrence Handle1:CAS:528:DyaK2sXmtVKhtLw%3D Occurrence Handle16535689

    CAS  PubMed  Google Scholar 

  40. AM Romani S Sabater (1998) ArticleTitleA stromatolitic cyanobacterial crust in a Mediterranean stream optimizes organic matter use Aquat Microb Ecol 16 131–141

    Google Scholar 

  41. P Scheldman D Baurain R Bouhy M Scott M Mühling BA Whitton A Belay A Wilmotte (1999) ArticleTitleArthrospira (‘Spirulina’) strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer FEMS Microbiol Lett 172 213–222

    Google Scholar 

  42. JM Shively G Keulen Particlevan WG Meijer (1998) ArticleTitleSomething from almost nothing: carbon dioxide fixation in chemoautotrophs Annu Rev Microbiol 52 191–230 Occurrence Handle10.1146/annurev.micro.52.1.191 Occurrence Handle9891798 Occurrence Handle1:CAS:528:DyaK1cXms1Giurg%3D

    Article  PubMed  CAS  Google Scholar 

  43. LJ Stal (1995) ArticleTitlePhysiological ecology of cyanobacteria in microbial mats and other communities New Phytol 131 1–32 Occurrence Handle1:CAS:528:DyaK2MXptFShsLk%3D

    CAS  Google Scholar 

  44. LJ Stal P Caumette (Eds) (1994) Microbial Mats. Structure, Development and Environmental Significance. NATO ASI Series, vol. 35 Springer Verlag Berlin-Heidelberg

    Google Scholar 

  45. JT Staley MP Bryant N Pfennig JG Holt (Eds) (1989) Bergey's Manual of Systematic Bacteriology. Vol 3 Williams and Wilkins Baltimore

    Google Scholar 

  46. H Gemerden Particlevan (1993) ArticleTitleMicrobial mats: a joint venture Mar Geol 113 3–25

    Google Scholar 

  47. H Gemerden Particlevan J Mas (1995) Ecology of phototrophic sulfur bacteria RE Blankenship MT Madigan CE Bauer (Eds) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht 49–85

    Google Scholar 

  48. PT Visscher FP Ende Particlevan den BEM Schaub H Gemerden Particlevan (1992) ArticleTitleCompetition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat FEMS Microbiol Ecol 101 51–58 Occurrence Handle10.1016/0378-1097(92)90697-M Occurrence Handle1:CAS:528:DyaK38XkvVKmsLo%3D

    Article  CAS  Google Scholar 

  49. D Ward RW Castenholz (2000) Cyanobacteria in geothermal habitats BA Whitton M Potts (Eds) The Ecology of Cyanobacteria: Their Diversity in Time and Space Kluwer Academic Publishers Dordrecht 37–59

    Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Prof. Dr. Ramón Margalef, ecologist, and Prof. Dr. Federico Uruburu, microbiologist. They passed away recently after a whole life of dedication to science. The authors would like to thank Dr. J. Komárek and Dr. J. Komarkova for their help in the classification of cyanobacteria during the 2001 IAC workshop held in Barcelona, S. Bradt and S.R. Schaack for the review of English composition, A. Picazo for his assistance in the figure design, and Matthias Pöckl for his skilful technical assistance in molecular analysis of the isolates. We are much indebted to three anonymous reviewers who made interesting comments and helped very much to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Camacho.

Additional information

An erratum to this article is availbale at http://dx.doi.org/10.1007/s00248-005-8003-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, A., Rochera, C., Silvestre, J.J. et al. Spatial Dominance and Inorganic Carbon Assimilation by Conspicuous Autotrophic Biofilms in a Physical and Chemical Gradient of a Cold Sulfurous Spring: The Role of Differential Ecological Strategies. Microb Ecol 50, 172–184 (2005). https://doi.org/10.1007/s00248-004-0156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-004-0156-x

Keywords

Navigation