Skip to main content
Log in

Effects of Dissolved Organic Matter Photoproducts and Mineral Nutrient Supply on Bacterial Growth in Mediterranean Inland Waters

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Sunlight reacts with dissolved organic matter (DOM) modifying its availability as bacterial substrate. We assessed the impact of DOM photoproducts and mineral nutrient supply on bacterial growth in seven inland waters from the South of Spain, where DOM is characterized by low chromophoric content and long residence time. Factorial experiments were performed with presence vs absence of DOM photoproducts and mineral nutrient supply. In six of the seven experiments, we found a significant and negative effect of DOM photoproducts on bacterial growth and a significant and positive effect of mineral nutrient supply. The interaction of these two factors leaded to a compensation of negative effects of photoproducts by availability of mineral nutrients. Dissolved organic matter diagenetic status and the ionic environment where organic carbon is dissolved can be influencing bacterial DOM processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Amon, RMW, Benner, R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41: 41–51

    Article  CAS  Google Scholar 

  2. Amon, RMW, Benner, R (1994) Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 369(6481): 549–552

    Article  CAS  Google Scholar 

  3. Azam, F, Fenchel, T, Field, JG, Gray, JS, Meyerreil, LA, Thingstad, F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10(3): 257–263

    Google Scholar 

  4. Benner, R, Biddanda, B (1998) Photochemical transformations of surface and deep marine DOM: effects on bacterial growth. Limnol Oceanogr 43: 1373–1378

    Article  CAS  Google Scholar 

  5. Benner, R, Strom, M (1993) A critical evaluation of the analytic blank associated with DOC measurements by high-temperature catalytic oxidation. Mar Chem 41: 153–160

    Article  CAS  Google Scholar 

  6. Braslavsky, SE, Houk, KN, Verhoeven, JW (1996) Glossary of Terms Used in Photochemistry. International Union of Pure and Applied Chemistry

  7. Carlson CA, Giovannoni SJ, Hansell D, Goldberg S, Parsons R, Otero M, Vergin K, Wheeler B (2002) Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol 30: 19–36

    Google Scholar 

  8. De Haan, H (1972) Molecule-size distribution of soluble humic compounds from different natural waters. Freshw Biol 2: 235–241

    Article  Google Scholar 

  9. De Lange, HJ, Morris, DP, Williamson, CE (2003) Solar ultraviolet photodegradation of DOC may stimulate freshwater food webs. J Plankton Res 25(1): 111–117

    Article  Google Scholar 

  10. Edling, H, Tranvik, L (1996) Effects of pH on β-glucosidase activity and availability of DOC to bacteria in lakes. Arch Hydrobiol 48: 123–132

    CAS  Google Scholar 

  11. Fagerbakke, KM, Heldal, M, Norland, S (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Microb Ecol 10(1): 15–27

    Google Scholar 

  12. Gibson, JJ, Prepas, EE, McEachern, P (2002) Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of Boreal lakes. J Hydrol 262(1–4): 128–144

    Article  Google Scholar 

  13. Hulbert, SH, White, MD (1993) Experiments with freshwater invertebrate zooplanktivores: quality of statistical analyses. Bull Mar Sci 53: 128–153

    Google Scholar 

  14. Kieber, R, Hydro, L, Seaton, P (1997) Photooxidation of triglycerides and fatty acids in seawater: implication toward the formation of marine humic substances. Limnol Oceanogr 42: 1454–1462

    Article  CAS  Google Scholar 

  15. Kortelainen, P (1993) Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can J Fish Aquat Sci 50: 1477–1483

    Article  CAS  Google Scholar 

  16. Lindell, MJ, Granéli, W, Tranvik, LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40: 195–199

    Article  Google Scholar 

  17. McAllister, SL, Bauer, JE, Kelly, J, Ducklow, HW (2005) Effects of sunlight on decomposition of estuarine dissolved organic C, N and P and bacterial metabolism. Aquat Microb Ecol 40: 25–35

    Google Scholar 

  18. McKnight, DM, Boyer, EW, Westerhoff, PK, Doran, PT, Kulbe, T, Andersen, DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46: 38–48

    Article  CAS  Google Scholar 

  19. Miller, WL (1998) Photochemical principles and experimental considerations. In: Hessen, DO, Tranvik, LJ (Eds.) Aquatic Humic Substances: Ecology and Biogeochemistry, Springer, Berlin Heidelberg New York, pp 125–143

    Google Scholar 

  20. Moran, MA, Zepp, RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42(6): 1307–1316

    Article  CAS  Google Scholar 

  21. Morris, DP, Hargreaves, BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol Oceanogr 42(2): 239–249

    Article  CAS  Google Scholar 

  22. Morris, DP, Zagarese, HE, Williamson, CE, Balseiro, EG, Hargreaves, BR, Modenutti, B, Moeller, RE, Queimalinos, C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40: 1381–1391

    Article  CAS  Google Scholar 

  23. Obernosterer, I, Reitner, B, Herndl, GJ (1999) Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton. Limnol Oceanogr 44 (7): 1645–1654

    Article  Google Scholar 

  24. Porter, KG, Feig, LS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943–948

    Google Scholar 

  25. Pulido-Villena, E, Reche, I (2003) Exploring bacterioplankton growth and protein synthesis to determine conversion factors across a gradient of dissolved organic matter. Microb Ecol 46: 33–42

    Article  PubMed  CAS  Google Scholar 

  26. Reche, I, Pace, ML (2002) Linking dynamic of dissolved organic carbon in a forested lake with environmental factors. Biogeochemistry 61: 21–36

    Article  CAS  Google Scholar 

  27. Reche, I, Pace, ML, Cole, JJ (1998) Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon. Microb Ecol 36: 270–280

    Article  PubMed  CAS  Google Scholar 

  28. Reche, I, Pace, ML, Cole, JJ (1999) Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry 44: 259–280

    Google Scholar 

  29. Reche, I, Pace, ML, Cole, JJ (2000) Modeled effects of dissolved organic carbon and solar spectra on photobleaching in lake ecosystems. Ecosystems 3: 419–432

    Article  CAS  Google Scholar 

  30. Reche, I, Pulido-Villena, E, Conde-Porcuna, JM, Carrillo, P (2001) Photoreactivity of dissolved organic matter from high-mountain lakes of Sierra Nevada, Spain. Arct Antarct Alp Res 33(4): 426–434

    Article  Google Scholar 

  31. Rivkin, RB, Anderson, MR (1997) Inorganic nutrient limitation of oceanic bacterioplankton. Limnol Oceanogr 42: 730–740

    Article  CAS  Google Scholar 

  32. Rochelle-Newall, EJ, Pizay, MD, Middelburg, JJ, Boschker, HTS, Gattuso, JP (2004) Degradation of riverine dissolved organic matter by seawater bacteria. Aquat Microb Ecol 37: 9–22

    Google Scholar 

  33. Scully, NM, Cooper, WJ, Tranvik, L (2003) Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol Ecol 46: 353–357

    Article  CAS  PubMed  Google Scholar 

  34. Scully, NM, Tranvik, LJ, Cooper, WJ (2003) Photochemical effects on the interaction of enzymes and dissolved organic matter in natural waters. Limnol Oceanogr 48(2): 1818–1824

    Article  CAS  Google Scholar 

  35. Smith, EM, Prairie, YT (2004) Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol Oceanogr 49(1): 137–147

    Article  CAS  Google Scholar 

  36. Strome, DJ, Miller, MC (1978) Photolytic changes in dissolved humic substances. Verh Int Verein Limnol 20: 1248–1254

    Google Scholar 

  37. Sun, L, Perdue, EM, Meyer, JL, Weis, J (1997) Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol Oceanogr 42: 714–721

    Article  CAS  Google Scholar 

  38. Tipping, E, Woof, C (1983) Seasonal-variations in the concentrations of humic substances in a soft-water lake. Limnol Oceanogr 28(1): 168–172

    Article  CAS  Google Scholar 

  39. Tranvik, LJ (1988) Availability of dissolved organic-carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb Ecol 16(3): 311–322

    Article  CAS  Google Scholar 

  40. Tranvik, L, Bertilsson, S (2001) Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4: 458–463

    Article  Google Scholar 

  41. Waiser, MJ, Robarts, RD (2000) Changes in composition and reactivity of allochthonous DOM in a prairie saline lake. Limnol Oceanogr 40: 566–574

    Article  Google Scholar 

  42. Wetzel, RG (1990) Land–water interfaces: metabolic and limnological regulators. Verh Int Verein Limnol 24: 6–24

    Google Scholar 

  43. Wetzel, RG (1992) Gradient-dominated ecosystems—sources and regulatory functions of dissolved organic-matter in fresh-water ecosystems. Hydrobiologia 229: 181–198

    CAS  Google Scholar 

  44. Xenopoulos, MA, Lodge, DM, Frentress, J, Kreps, TA, Bridgham, SD, Grossman, E, Jackson, KJ (2003) Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr 48(6): 2321–2334

    Google Scholar 

Download references

Acknowledgments

We thank J. Montero Meléndez, A. Castañeda, and J.A. Delgado Molina for their assistance in the field. Dissolved organic carbon samples were kindly analyzed in the laboratory of Dr. M.L. Pace. Stable isotope analyses of oxygen were carried out by the Stable Isotope Facility at Estación Experimental del Zaidín (CSIC, Granada, Spain). This research was supported by Project CGL 2005-00076 to I. Reche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Ortega-Retuerta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega-Retuerta, E., Pulido-Villena, E. & Reche, I. Effects of Dissolved Organic Matter Photoproducts and Mineral Nutrient Supply on Bacterial Growth in Mediterranean Inland Waters. Microb Ecol 54, 161–169 (2007). https://doi.org/10.1007/s00248-006-9186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9186-x

Keywords

Navigation