Skip to main content
Log in

Methanogen Colonisation Does Not Significantly Alter Acetogen Diversity in Lambs Isolated 17 h After Birth and Raised Aseptically

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Reductive acetogenesis is not competitive with methanogenesis in adult ruminants, whereas acetogenic bacteria are the dominant hydrogenotrophs in the early rumen microbiota. The ecology of hydrogenotrophs in the developing rumen was investigated using young lambs, raised in sterile isolators, and conventional adult sheep. Two lambs were born naturally, left with their dams for 17 h and then placed into a sterile isolator and reared aseptically. They were inoculated with cellulolytic bacteria and later with Methanobrevibacter sp. 87.7 to investigate the effect of methanogen establishment on the rumen acetogen population since they lacked cultivable representatives of methanogens. Putative acetogens were investigated by acetyl-CoA synthase and formyltetrahydrofolate synthetase gene analysis and methanogens by methyl coenzyme reductase A gene analysis. Unexpectedly, a low abundant but diverse population of methanogens (predominantly Methanobrevibacter spp.) was identified in isolated lambs pre-inoculation with Mbb. sp 87.7, which was similar to the community structure in conventional sheep. In contrast, potential acetogen diversity in isolated lambs and conventional sheep was different. Potential acetogens affiliated between the Lachnospiraceae and Clostridiaceae in conventional sheep and with the Blautia genus and the Lachnospiraceae in isolated lambs. The establishment of Mbb. sp. 87.7 (1,000-fold increase in methanogens) did not substantially affect acetogen diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Morvan B, Bonnemoy F, Fonty G, Gouet P (1996) Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic Archaea from digestive tract of different mammals. Curr Microbiol 32:129–133

    Article  PubMed  CAS  Google Scholar 

  2. Morvan B, Dore J, Rieu-Lesme F, Foucat L, Fonty G, Gouet P (1994) Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiol Lett 117:249–256

    Article  PubMed  CAS  Google Scholar 

  3. Morvan B, Rieu-Lesme F, Fonty G, Gouet P (1996) In vitro interactions between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 2:175–180

    Article  CAS  Google Scholar 

  4. Nollet L, Demeyer D, Verstraete W (1997) Effect of 2-bromoethansulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogensis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl Environ Microbiol 63:194–200

    PubMed  CAS  Google Scholar 

  5. Joblin KN (1999) Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agric Res 50:1307–1313

    Article  Google Scholar 

  6. Olsson K, Evans P, Joblin KN (2006) Ruminal acetogens in dairy cows: dietary effects and quantification of E. limosum. Reprod Nutr Devel 46(suppl 1):S109

    Google Scholar 

  7. Fonty G, Joblin KN, Chavarot M, Roux R, Naylor GE, Michallon F (2007) Methanogen-free lambs: establishment and development of ruminal hydrogenotrophs. Appl Environ Microbiol 73:6391–6403

    Article  PubMed  CAS  Google Scholar 

  8. Fonty G, Gouet P, Nebout JM (1989) Development of the cellulolytic microflora in the rumen of lambs transferred into sterile isolators a few days after birth. Can J Microbiol 35:416–422

    Article  PubMed  CAS  Google Scholar 

  9. Fonty G, Williams AG, Bonnemoy F, Morvan B, Withers SE, Gouet P (1997) Effect of Methanobrevibacter sp MF1 inoculation on glycoside hydrolase and polysaccharide depolymerase activities, wheat straw degradation and volatile fatty acid concentrations in the rumen of gnotobiotically-reared lambs. Anaerobe 3:383–389

    Article  PubMed  CAS  Google Scholar 

  10. Chaucheyras-Durand F, Fonty G (2001) Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reprod Nutr Dev 41:57–68

    Article  PubMed  CAS  Google Scholar 

  11. Chaucheyras-Durand F, Masseglia S, Fonty G, Forano E (2010) Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilisation and methane production in the rumen of gnotobiotically-reared lambs. Appl Environ Microbiol 76:7931–7937

    Article  PubMed  CAS  Google Scholar 

  12. Williams AG, Joblin KN, Fonty G (1994) Interactions between the rumen chytrid fungi and other microorganisms. In: Mountford DO, Orpin CG (eds) Anaerobic Fungi: Biology, Ecology, and Function. Marcel Dekker, Inc, New York

    Google Scholar 

  13. Hobson PN, Fonty G (1997) Biological models of the rumen function. In: Hobson PN, Stewart CS (eds) The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, pp 661–684

    Chapter  Google Scholar 

  14. Fonty G, Gouet P, Jouany J-P, Senaud J (1987) Establishment of the microflora and anaerobic fungi in the rumen of lambs. J Gen Microbiol 133:1835–1843

    Google Scholar 

  15. Fonty G, Gouet P, Jouany JP, Senaud J (1983) Ecological factors determining establishment of cellulolytic bacteria and protozoa in the rumens of meroxenic lambs. J Gen Microbiol 129:213–223

    PubMed  CAS  Google Scholar 

  16. Bera-Maillet C, Mosoni P, Kwasiborski A, Suau F, Ribot Y, Forano E (2009) Development of a RT-qPCR method for the quantification of Fibrobacter succinogenes S85 glycoside hydrolase transcripts in the rumen content of gnotobiotic and conventional sheep. J Microbiol Methods 77:8–16

    Article  PubMed  CAS  Google Scholar 

  17. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    PubMed  CAS  Google Scholar 

  18. Ducluzeau R, Raibaud P (1979) Ecologie Microbienne du Tube Digestif. Masson, Paris

    Google Scholar 

  19. Brossard L, Martin C, Chaucheyras-Durand F, Michalet-Doreau B (2004) Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reprod Nutr Dev 44:195–206

    Article  PubMed  CAS  Google Scholar 

  20. Halliwell G, Bryant MP (1963) The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J Gen Microbiol 32:441–448

    Article  PubMed  CAS  Google Scholar 

  21. Greening RC, Leedle JAZ (1989) Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol 151:399–406

    Article  PubMed  CAS  Google Scholar 

  22. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  23. Clarke KR, Owens NJP (1983) A simple and versatile micro-computer program for the determination of 'most probable number'. J Microbiol Meth 1:133–137

    Article  Google Scholar 

  24. Faichney GJ, Graham NM, Walker DM (1999) Rumen characteristics, methane emissions and digestion in weaned lambs reared in isolation. Aust J Agric Res 50:1083–1089

    Article  Google Scholar 

  25. Demeyer DI, Van Nevel CJ (1975) Methanogenesis, an integrated part of carbohydrate fermentation and its control. In: McDonald IW, Warner ACI (eds) Digestion and metabolism in the ruminant. The University of New England Publishing Unit, Armidale, Australia

    Google Scholar 

  26. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digest and fecal samples. Biotechniques 36:808–812

    PubMed  CAS  Google Scholar 

  27. Mosoni P, Martin C, Forano E, Morgavi DP (2011) Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. J Anim Sci 89:783–791

    Article  PubMed  CAS  Google Scholar 

  28. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Ohene-Adjei S, Teather RM, Ivan M, Forster RJ (2007) Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl Environ Microb 73:4609–4618

    Article  CAS  Google Scholar 

  30. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics. Wiley, London

    Google Scholar 

  31. Cole JR, Chai B, Marsh TL et al (2003) The Ribosomal Database Project (RDP-II) previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucl Acids Res 31:442–443

    Article  PubMed  CAS  Google Scholar 

  32. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  CAS  Google Scholar 

  33. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  34. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  35. Leaphart AB, Lovell CR (2001) Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 67:1392–1395

    Article  PubMed  CAS  Google Scholar 

  36. Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  37. Gagen EJ, Denman SE, Padmanabha J, Zadbuke S, Al Jassim R, Morrison M, McSweeney CS (2010) Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol 76:7785–7795

    Article  PubMed  CAS  Google Scholar 

  38. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  39. Henderson G, Naylor GE, Leahy SC, Janssen PH (2010) Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 76:2058–2066

    Article  PubMed  CAS  Google Scholar 

  40. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    PubMed  CAS  Google Scholar 

  41. Lysons RJ, Alexander TJL, Wellstead PD (1976) Defined bacterial populations in the rumens of gnotobiotic lambs 94:257-269

    Google Scholar 

  42. Anderson KL, Nagaraja TG, Morrill JL, Avery TB, Galitzer SJ, Boyer JE (1987) Ruminal microbial development in conventionally or early-weaned calves. J Anim Sci 64:1215–1226

    PubMed  CAS  Google Scholar 

  43. Wright A-DG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microb 70:1263–1270

    Article  CAS  Google Scholar 

  44. Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10:277–285

    Article  PubMed  CAS  Google Scholar 

  45. Janssen PH, Kirs M (2008) Structure of the Archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    Article  PubMed  CAS  Google Scholar 

  46. Weimer PJ, Stevenson DM, Mantovani HC, Man SLC (2010) Host specificity of the ruminal bacterial comunity in the dairy cow following near-total exchange of ruminal contents. J Dairy Sci 93:5902–5912

    Article  PubMed  CAS  Google Scholar 

  47. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Stanley F, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes: A handbook on the biology of bacteria: Archaea. Bacteria: Firmicutes, Actinomycetes. Springer, New York

    Google Scholar 

  48. Pitta DW, Pinchak WE, Dowd SE et al (2010) Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol 59:511–522

    Article  PubMed  Google Scholar 

  49. Kim M, Morrison M, Zhongtang Y (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63

    Article  PubMed  CAS  Google Scholar 

  50. Le Van TD, Robinson JA, Ralph J, Greening RC, Smolenski WJ, Leedle JAZ, Schaefer DM (1998) Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Appl Environ Microbiol 64:3429–3436

    PubMed  Google Scholar 

  51. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128

    Article  PubMed  CAS  Google Scholar 

  52. Breznak JA (1994) Acetogenesis from carbon dioxide in termite guts. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York, pp 303–330

    Chapter  Google Scholar 

  53. Breznak JA, Blum JS (1991) Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch Microbiol 156:105–110

    Article  CAS  Google Scholar 

  54. Xu K, Liu H, Du G, Chen J (2009) Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments. Anaerobe 15:204–213

    Article  PubMed  CAS  Google Scholar 

  55. Matsui H, Kojima N, Tajima K (2008) Diversity of the formyltetrahydrofolate synthetase gene (fhs) a key enzyme for reductive acetogenesis, in the bovine rumen. Biosci Biotechnol Biochem 72:3273–3276

    Article  PubMed  CAS  Google Scholar 

  56. Cord-Ruwisch R, Seitz H, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357

    Article  CAS  Google Scholar 

  57. Ellis JL, Dijkstra J, Kebreab E, Bannink A, Odongo NE, McBride BW, France J (2008) Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J Agri Sci 146:213–233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Gérard Vert and Christophe de Martrin (Unit of Microbiology, INRA Clermont-Ferrand/Theix) for the rearing of lambs and rumen sampling, and to Pascale Lepercq, Rémy Roux and Gérard Andant for technical assistance. This work was partly funded by the French and Australian governments, through the French–Australian Science and Technology (FAST) program. Emma Gagen was a recipient of scholarships from The University of Queensland and CSIRO Livestock Industries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma J. Gagen.

Additional information

Emma J. Gagen and Pascale Mosoni contributed equally to the manuscript

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 16 kb)

ESM 2

(PDF 15 kb)

ESM 3

(PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagen, E.J., Mosoni, P., Denman, S.E. et al. Methanogen Colonisation Does Not Significantly Alter Acetogen Diversity in Lambs Isolated 17 h After Birth and Raised Aseptically. Microb Ecol 64, 628–640 (2012). https://doi.org/10.1007/s00248-012-0024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0024-z

Keywords

Navigation