Skip to main content

Advertisement

Log in

Characterization of Vibrios Diversity in the Mucus of the Polychaete Myxicola infundibulum (Annellida, Polichaeta)

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Vibrios are among the most abundant culturable microbes in aquatic environments. They can be either free-living in the water column or associated with several marine organisms as mutualists, saprophytes, or parasites. In the present study we analysed vibrios abundance and diversity in the mucus of the polychaete Myxicola infundibulum, complementing culture-based with molecular methods. Vibrios reached 4.6 × 103 CFU mL−1 thus representing a conspicuous component of the heterotrophic culturable bacteria. In addition, luminous vibrios accounted for about 60 % of the total culturable vibrios in the mucus. The isolates were assigned to: Vibrio gigantis, Vibrio fischeri, Vibrio jasicida, Vibrio crassostreae, Vibrio kanaloae, and Vibrio xuii. Two Vibrio isolates (MI-13 and MI-15) may belong to a new species. We also tested the ability of the Vibrio isolates to grow on M. infundibulum mucus as the sole carbon source. All strains showed appreciable growth in the presence of mucus, leading us to conclude that this matrix, which is abundant and covers the animal entirely, may represent a microcosm and a food source for some bacteria, playing a crucial role in the structuring of a mucus-associated beneficial microbial community. Moreover, the trophic relationship between vibrios and M. infundibulum mucus could be enhanced by the protection that mucus offers to vibrios. The results of this study represent a contribution to the growing evidence for complex and dynamic invertebrate-microbe associations present in nature and highlight the importance of exploring relationships that Vibrio species establish with marine invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aiyar SE, Gaal T, Gourse RL (2002) rRNA promoter activity in the fast-growing bacterium Vibrio natriegens. J Bacteriol 184:1349–1358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Austin B, Austin DA (1999) Bacterial fish pathogens. Diseases of farmed and wild fish, 3rd edn. Springer, London

    Google Scholar 

  3. Austin B, Pride AC, Rhodie GA (2003) Association of a bacteriophage with virulence in Vibrio harveyi. J Fish Dis 26:55–58

    Article  CAS  PubMed  Google Scholar 

  4. Baumann P, Baumann L (1981) The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alkaligenes. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The Prokaryotes, vol II. Springer, Berlin, pp 1302–1331

    Google Scholar 

  5. Beleneva IA, Kukhlevskii AD (2010) Characterization of Vibrio gigantis and Vibrio pomeroyi isolated from invertebrates of Peter the Great Bay, Sea of Japan. Microbiology 79:402–407

    Article  CAS  Google Scholar 

  6. Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J et al (2003) Vibrio coralliilyticus sp nov., a temperature dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    Article  CAS  PubMed  Google Scholar 

  7. Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174

    Article  CAS  PubMed  Google Scholar 

  8. Brown JK (1994) Bootstrap hypothesis tests for evolutionary trees and other dendrograms. Proc Natl Acad Sci U S A 91:12293–12297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Calow P (1979) Why some metazoan mucus secretions are more susceptible to microbial attack than others. Am Nat 114:149–152

    Article  Google Scholar 

  10. Chimetto LA, Cleenwerck I, Alves N Jr, Silva BS, Brocchi M, Willems A, De Vos P, Thompson FL (2011) Vibrio communis sp. nov., isolated from the marine animals (Mussismilia hispida, Phyllogorgia dilatata, Palythoa caribaeorum, Palythoa variabilis and Litopenaeus vannamei). Int J Syst Evol Microbiol 61:362–368

    Article  CAS  PubMed  Google Scholar 

  11. Coffroth MA (1990) Mucus sheet formation on poritid corals: an evaluation of coral mucus as a nutrient source on reefs. Mar Biol 105:39–49

    Article  CAS  Google Scholar 

  12. Connor VM (1986) The use of mucous trails by intertidal limpets to enhance food resources. Biol Bull 171:548–564

    Article  Google Scholar 

  13. Cook A, Bamford OS, Freeman JB, Teidman DJ (1969) A study on the homing habit of the limpet. Anim Behav 17:330–339

    Article  Google Scholar 

  14. Dunlap PV, Kita-Tsukamoto K (2006) Luminous Bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria, vol 3, 3rd edn. Springer, New York, pp 863–892

    Chapter  Google Scholar 

  15. Faury N, Saulnier D, Thompson FL, Gay M, Swings J, Le Roux F (2004) Vibrio crassostreae sp. nov., isolated from the haemolymph of oysters (Crassostrea gigas). Int J Syst Evol Microbiol 54:2137–2140

    Article  CAS  PubMed  Google Scholar 

  16. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  17. Fidopiastis PM, Boletzky SV, Ruby EG (1998) A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J Bacteriol 180:59–64

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Flatt P, Gautschi J, Thacker R, Musafija-Girt M, Crews P, Gerwick W (2005) Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis. Mar Biol 147:761–774

    Article  CAS  Google Scholar 

  19. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  20. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103

    Article  Google Scholar 

  21. Giangrande A, Cosentino A, Lo Presti C, Licciano M (2012) Sabellidae (Annelida) from the Faro coastal lake (Messina, Ionian Sea), with the first record of the invasive species Branchiomma bairdi along the Italian coast. Mediterr Mar Sci 13:283–293

    Article  Google Scholar 

  22. Goldberg W (2002) Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34:232–245

    Article  PubMed  Google Scholar 

  23. Gomez-Gil B, Roque A, Velasco-Blanco G (2002) Culture of Vibrio alginolyticus C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri. Aquaculture 211:43–48

    Article  Google Scholar 

  24. Guerrero-Ferreira R, Gorman C, Chavez AA, Willie S, Nishiguchi MK (2013) Characterization of the bacterial diversity in Indo-West Pacific loliginid and sepiolid squid light organs. Microb Ecol 65:214–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Guerrero-Ferreira RC, Nishiguchi MK (2007) Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca: Cephalopoda). Cladistics 23:497–506

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hada HS, West PA, Lee JV, Stemmler J, Colwell RR (1984) Vibrio tubiashii sp. nov., a Pathogen of Bivalve Mollusks. Int J Syst Bacteriol 34:1–4

    Article  Google Scholar 

  27. Heidelberg JF, Heidelberg KB, Colwell RR (2002) Bacteria of the gamma-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Appl Environ Microbiol 68:5498–5507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hildebrand M, Waggoner LE, Lim GE, Sharp KH, Ridley CP, Haygood MG (2004) Approaches to identify, clone, and express symbiont bioactive metabolite genes. Nat Prod Rep 21:122–142

    Article  CAS  PubMed  Google Scholar 

  29. Høi L, Larsen JL, Dalsgaard I, Dalsgaard A (1998) Occurrence of Vibrio vulnificus biotypes in Danish marine environments. Appl Environ Microbiol 64(1):7–13

    PubMed Central  PubMed  Google Scholar 

  30. Huq A, Huq SA, Grimes DJ, O’brien M, Chu KH, Mcdowell Capuzzo J, Colwell RR (1986) Colonizarion of the gut of the blue crab (Callinectes sapidus) by Vibrio cholerae. Appl Environ Microbiol 52(3):586–588

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  32. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  33. Koren O, Rosenber E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Environ Microbiol 72(8):5254–5259

    Article  CAS  Google Scholar 

  34. Kushmaro A, Bani E, Loya Y, Stackebrandt E, Rosenberg E (2001) Vibrio shiloi sp. nov. the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51:1383–1388

    Article  CAS  PubMed  Google Scholar 

  35. Lavilla-Pitogo CR, de la Pena LD (1998) Mortalities of pondcultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent vibrios in the rearing environment. Aquaculture 164:337–349

    Article  Google Scholar 

  36. Le Roux F, Gay M, Lambert C, Waechter M, Poubalanne S, Chollet B, Nicolas JL, Berthe FCJ (2002) Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat Living Resour 15:251–258

    Article  Google Scholar 

  37. Le Roux F, Goubet A, Thompson FL, Faury N, Gay M, Swings J, Saulnier D (2005) Vibrio gigantis sp. nov., isolated from the haemolymph of cultured oysters (Crassostrea gigas). Int J Syst Evol Microbiol 55:2251–2255

    Article  PubMed  Google Scholar 

  38. Lopanik N, Lindquist N, Targett N (2004) Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 139:131–139

    Article  PubMed  Google Scholar 

  39. Macian MC, Garay E, Gonzalez-Candelas F, Pujalte MJ, Aznar R (2000) Ribotyping of Vibrio populations associated with cultured oysters (Ostrea edulis). Syst Appl Microbiol 23:409–417

    Article  CAS  PubMed  Google Scholar 

  40. Macian MC, Ludwig W, Aznar R, Grimont PAD, Schleifer KH, Garay E, Pujalte MJ (2001) Vibrio lentus sp. nov., isolated from Mediterranean oysters. Int J Syst Evol Microbiol 51:1449–1456

    Article  CAS  PubMed  Google Scholar 

  41. McFall-Ngai M, Brennan C, Weis V, Lamarcq L (1998) Mannose adhesin-glycan interactions in the Euprymna scolopes-Vibrio fischeri symbiosis. In: Le Gal Y, Halvorson HO (eds) New developments in marine biotechnology. Plenum Press, New York, pp 273–276

    Chapter  Google Scholar 

  42. McFarlane ID (1980) Trail-following and trail-searching behaviour in homing of the intertidal gastropod mollusc, Onchidium verruculatum. Mar Behav Physiol 7:95–108

    Article  Google Scholar 

  43. Moss SM, LeaMaster BR, Sweeney JN (2000) Relative abundance and species composition of gram-negative, aerobic bacteria associated with the gut of juvenile white shrimp Litopenaeus vannamei reared in oligotrophic well water and eutrophic pond water. J World Aquac Soc 31:255–263

    Article  Google Scholar 

  44. Noguerola I, Blanch AR (2008) Identification of Vibrio spp. with a set of dichotomous keys. J Appl Microbiol 105:175–185

    Article  CAS  PubMed  Google Scholar 

  45. Omeroglu EE, Karaboz I (2012) Characterization and genotyping by pulsed-field gel electrophoresis (PFGE) of the first bioluminescent Vibrio gigantis strains. Afr J Microbiol Res 6(43):7111–7122

    CAS  Google Scholar 

  46. Reshef L, Koren O, Loya Y, Rosenberg IZ, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  CAS  PubMed  Google Scholar 

  47. Ridley CP, Bergquist PR, Harper MK, Faulkner DJ, Hooper JNA, Haygood MG (2005) Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbiont, Oscillatoria spongeliae. Chem Biol 12:397–406

    Article  CAS  PubMed  Google Scholar 

  48. Ritchie KB, Smith GW (2004) Microbial communities of coral surface mucopolysaccharide layers. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Heidelberg, pp 259–263

    Chapter  Google Scholar 

  49. Rohwer F, Kelley S (2004) Culture-independent analyses of coral-associated microbes. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Heidelberg, pp 265–275

    Chapter  Google Scholar 

  50. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  51. Ruby EG (1996) Lessons from a cooperative, bacterial–animal association: the Vibrio fischeriEuprymna scolopes light organ symbiosis. Annu Rev Microbiol 50:591–624

    Article  CAS  PubMed  Google Scholar 

  52. Ruby EG, Morin JG (1979) Luminous enteric bacteria of marine fishes: a study of their distribution, densities, and dispersion. Appl Environ Microbiol 38:406–411

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Ruby EG, Nealson KH (1976) Symbiotic associations of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies. Biol Bull 151:574–586

    Article  CAS  PubMed  Google Scholar 

  54. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  55. Sambrook J, Russel DW (2001) Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  56. Santiago-Vazquez LZ, Bruck TB, Bruck WM, Duque-Alarcon AP, McCarthy PJ, Kerr RG (2007) The diversity of the bacterial communities associated with the azooxanthellate hexacoral Cirrhipathes lutkeni. Int Soc Microb Ecol J 1:654–659

    Google Scholar 

  57. Schwartzkoff S, Murphy T, Black S (1983) Independent Investigations in Introductory Biology, 3rd edn. Burgess Publishing Company, Minneapolis

    Google Scholar 

  58. Sober E (1983) Parsimony in Systematics: Philosophical Issues. Annu Rev Ecol Evol Syst 14:335–357

    Article  Google Scholar 

  59. Stabili L, Cardone F, Alifano P, Tredici SM, Piraino S, Corriero G, Gaino E (2012) Epidemic mortality of the sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a Vibrio bacterium. Microb Ecol 64(3):802–813

    Article  PubMed  Google Scholar 

  60. Stabili L, Gravili C, Piraino S, Boero F, Alifano P (2006) Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microb Ecol 52:603–608

    Article  CAS  PubMed  Google Scholar 

  61. Stabili L, Gravili C, Tredici SM, Piraino S, Tala’ A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from Some Hydrozoa and Bryozoa species. Microb Ecol 56(4):625–636

    Article  CAS  PubMed  Google Scholar 

  62. Stabili L, Licciano M, Giangrande A, Fanelli G, Cavallo RA (2006) Sabella spallanzanii filter-feeding on bacterial community: ecological implications and applications. Mar Environ Res 61:74–92

    Article  CAS  PubMed  Google Scholar 

  63. Stabili L, Schirosi R, Licciano M, Giangrande A (2009) The mucus of Sabella spallanzanii (Annelida, Polychaeta): its involvement in chemical defence and fertilization success. J Exp Mar Biol Ecol 374:144–149

    Article  CAS  Google Scholar 

  64. Sugumar G, Nakai T, Hirata Y, Matsubara D, Muroga K (1998) Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis Aquat Organ 33:111–118

    Article  CAS  PubMed  Google Scholar 

  65. Talà A, Lenucci M, Gaballo A, Durante M, Tredici SM, Debowles DA, Pizzolante G, Marcuccio C, Carata E, Piro G, Carpita NC, Mita G, Alifano P (2013) Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. Int J Syst Evol Microbiol 63:72–79

    Article  PubMed  Google Scholar 

  66. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Thompson FL, Iida T, Swings J (2004) Biodiversity of Vibrios. Microbiol Mol Biol Rev 68:403–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Thompson FL, Thompson CC, Li Y, Gomez-Gil B, Vandenberghe J, Hoste B, Swings J (2003) Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 53:753–759

    Article  CAS  PubMed  Google Scholar 

  69. Thompson FL, Thompson CC, Swings J (2003) Vibrio tasmaniensis sp. nov., isolated from Atlantic salmon (Salmo salar L.). Syst Appl Microbiol 26:65–69

    Article  CAS  PubMed  Google Scholar 

  70. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Bacteriol 57:2823–2829

    Article  CAS  Google Scholar 

  71. Vandenberghe J, Verdonck L, Robles-Arozarena R, Rivera G, Bolland A, Balladares M, Gomez-Gil B, Calderon J, Sorgeloos P, Swings J (1999) Vibrios associated with Litopenaeus vannamei larvae, postlarvae, broodstock, and hatchery probionts. Appl Environ Microbiol 65:2592–2597

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Vezzulli L, Colwell RR, Pruzzo C (2013) Ocean Warming and Spread of Pathogenic Vibrios in the Aquatic Environment. Microb Ecol. doi:10.1007/s00248-012-0163-2

    PubMed  Google Scholar 

  73. Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C (2010) Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol 12(7):2007–2019

    Article  CAS  PubMed  Google Scholar 

  74. Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gammaproteobacterium. Appl Environ Microbiol 73:3556–3565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. West PA, Colwell RR (1984) Identification and classification of Vibrionaceae: an overview. In: Colwell RR (ed) Vibrios in the Environment. John Wiley, New York, pp 205–363

    Google Scholar 

  76. Wiener P (1996) Experimental studies on the ecological role of antibiotic production in bacteria. Evol Ecol 10:405–421

    Article  Google Scholar 

  77. Yoshizawa S, Tsuruya Y, Fukui Y, Sawabe T, Yokota A, Kogure K, Higgins M, Carson J, Thompson FL (2012) Vibrio jasicida sp. nov., a member of the Harveyi clade, from marine animals (packhorse lobster, abalone, and Atlantic salmon). Int J Syst Evol Microbiol 62:1864–1870

    Article  CAS  PubMed  Google Scholar 

  78. Zaccone R, Caruso G, Calı C (2002) Heterotrophic bacteria in the northern Adriatic Sea: seasonal changes and ectoenzyme profile. Mar Environ Res 54:1–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the PRIN Project (2010–2011) and RITMARE Flagship Project both funded by the Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Stabili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stabili, L., Giangrande, A., Pizzolante, G. et al. Characterization of Vibrios Diversity in the Mucus of the Polychaete Myxicola infundibulum (Annellida, Polichaeta). Microb Ecol 67, 186–194 (2014). https://doi.org/10.1007/s00248-013-0312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0312-2

Keywords

Navigation