Skip to main content
Log in

The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Tephritid fruit fly species display a diversity of host plant specialisation on a scale from monophagy to polyphagy. Furthermore, while some species prefer ripening fruit, a few are restricted to damaged or rotting fruit. Such a diversity of host plant use may be reflected in the microbial symbiont diversity of tephritids and their grade of dependency on their microbiomes. Here, we investigated the microbiome of six tephritid species from three genera, including species that are polyphagous pests (Bactrocera tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Ceratitis capitata) and a monophagous specialist (Bactrocera cacuminata). These were compared with the microbiome of a non-pestiferous but polyphagous tephritid species that is restricted to damaged or rotting fruit (Dirioxa pornia). The bacterial community associated with whole fruit flies was analysed by 16S ribosomal DNA (rDNA) amplicon pyrosequencing to detect potential drivers of taxonomic composition. Overall, the dominant bacterial families were Enterobacteriaceae and Acetobacteraceae (both Proteobacteria), and Streptococcaceae and Enterococcaceae (both Firmicutes). Comparisons across species and genera found different microbial composition in the three tephritid genera, but limited consistent differentiation between Bactrocera species. Within Bactrocera species, differentiation of microbial composition seemed to be influenced by the environment, possibly including their diets; beyond this, tephritid species identity or ecology also had an effect. The microbiome of D. pornia was most distinct from the other five species, which may be due to its ecologically different niche of rotting or damaged fruit, as opposed to ripening fruit favoured by the other species. Our study is the first amplicon pyrosequencing study to compare the microbiomes of tephritid species and thus delivers important information about the turnover of microbial diversity within and between fruit fly species and their potential application in pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hagen KS (1966) Dependence of the olive fly, Dacus oleae, larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature 209:423–424. doi:10.1038/209423a0

    Article  Google Scholar 

  2. Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B (2010) Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc R Soc Lond B Biol Sci 277:1545–1552. doi:10.1098/rspb.2009.2102

    Article  CAS  Google Scholar 

  3. Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V (2005) ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 55:1641–1647. doi:10.1099/ijs. 0.63653-0

    Article  CAS  PubMed  Google Scholar 

  4. Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A, Daffonchio D, Mavragani-Tsipidou P (2009) Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol 75:3281–3288. doi:10.1128/AEM. 02933-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Estes AM, Hearn DJ, Bronstein JL, Pierson EA (2009) The olive fly endosymbiont, "Candidatus Erwinia dacicola", switches from an intracellular existence to an extracellular existence during host insect development. Appl Environ Microbiol 75:7097–7106. doi:10.1128/AEM. 00778-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Petri L (1910) Untersuchungen uber die Darmbakterien der Olivenfliege. Zentr Bakt Parasitenk Infekt II 26:357–367

    Google Scholar 

  7. Mazzon L, Piscedda A, Simonato M, Martinez-Sañudo I, Squartini A, Girolami V (2008) Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of ‘Candidatus Stammerula tephritidis’. Int J Syst Evol Microbiol 58:1277–1287. doi:10.1099/ijs. 0.65287-0

    Article  CAS  PubMed  Google Scholar 

  8. Mazzon L, Martinez-Sañudo I, Simonato M, Squartini A, Savio C, Girolami V (2010) Phylogenetic relationships between flies of the Tephritinae subfamily (Diptera, Tephritidae) and their symbiotic bacteria. Mol Phylogenet Evol 56:312–326. doi:10.1016/j.ympev.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  9. Howard DJ, Bush GL, Breznak JA (1985) The evolutionary significance of bacteria associated with Rhagoletis. Evolution 39:405–417. doi:10.2307/2408373

    Article  Google Scholar 

  10. Tsiropoulos GJ (1981) Effect of antibiotics incorporated into defined adult diets on survival and reproduction of the walnut husk fly, Rhagoletis completa Cress. (Dipt., Trypetidae). Z Angew Entomol 91:100–106. doi:10.1111/j.1439-0418.1981.tb04456.x

    Article  Google Scholar 

  11. Behar A, Yuval B, Jurkevitch E (2008) Gut bacterial communities in the Mediterranean fruit fly Ceratitis capitata and their impact on host longevity. J Insect Physiol 54:1377–1383. doi:10.1016/j.jinsphys.2008.07.011

    Article  CAS  PubMed  Google Scholar 

  12. Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14:2637–2643. doi:10.1111/j.1365-294X.2005.02615.x

    Article  CAS  PubMed  Google Scholar 

  13. Murphy KM, MacRae IC, Teakle DS (1988) Nitrogenase activity in the Queensland fruit fly, Dacus tryoni. Aust J Biol Sci 41:447–451. doi:10.1071/BI9880447

    CAS  Google Scholar 

  14. Murphy KM, Teakle DS, MacRae IC (1994) Kinetics of colonization of adult Queensland fruit flies (Bactrocera tryoni) by dinitrogen-fixing alimentary tract bacteria. Appl Environ Microbiol 60:2508–2517

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Hancock DL, Hamacek EL, Lloyd AC, Elson-Harris MM (2000) The distribution and host plants of fruit flies (Diptera: Tephritidae) in Australia. Department of Primary Industries, Queensland, Brisbane, Queensland

    Google Scholar 

  16. Osborne R, Meats A, Frommer M, Sved JA, Drew RAI, Robson MK (1997) Australian distribution of 17 species of fruit flies (Diptera: Tephritidae) caught in cue lure traps in February 1994. Aust J Entomol 36:45–50. doi:10.1111/j.1440-6055.1997.tb01430.x

    Article  Google Scholar 

  17. Dominiak BC, Daniels D (2012) Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust J Entomol 51:104–115. doi:10.1111/j.1440-6055.2011.00842.x

    Article  Google Scholar 

  18. Dominiak BC, Ekman JH (2013) The rise and demise of control options for fruit fly in Australia. Crop Prot 51:57–67. doi:10.1016/j.cropro.2013.04.006

    Article  CAS  Google Scholar 

  19. Ben Ami E, Yuval B, Jurkevitch E (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4:28–37. doi:10.1038/ismej.2009.82

    Article  PubMed  Google Scholar 

  20. Sacchetti P, Ghiardi B, Granchietti A, Stefanini FM, Belcari A (2014) Development of probiotic diets for the olive fly: evaluation of their effects on fly longevity and fecundity. Ann Appl Biol 164:138–150. doi:10.1111/aab.12088

    Article  CAS  Google Scholar 

  21. Boller EF, Russ K, Vallo V, Bush GL (1976) Incompatible races of European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), their origin and potential use in biological control. Entomol Exp Appl 20:237–247. doi:10.1111/j.1570-7458.1976.tb02640.x

    Article  Google Scholar 

  22. Zabalou S, Apostolaki A, Livadaras I, Franz G, Robinson AS, Savakis C, Bourtzis K (2009) Incompatible insect technique: incompatible males from a Ceratitis capitata genetic sexing strain. Entomol Exp Appl 132:232–240. doi:10.1111/j.1570-7458.2009.00886.x

    Article  Google Scholar 

  23. Fitt GP, O'Brien RW (1985) Bacteria associated with four species of Dacus (Diptera: Tephritidae) and their role in the nutrition of the larvae. Oecologia 67:447–454. doi:10.1007/BF00384954

    Article  Google Scholar 

  24. Drew RAI, Lloyd AC (1987) Relationship of fruit flies (Diptera: Tephritidae) and their bacteria to host plants. Ann Ent Soc Am 80:629–636

    Article  Google Scholar 

  25. Marchini D, Rosetto M, Dallai R, Marri L (2002) Bacteria associated with the oesophageal bulb of the medfly Ceratitis capitata (Diptera: Tephritidae). Curr Microbiol 44:120–124. doi:10.1007/s00284-001-0061-1

    Article  CAS  PubMed  Google Scholar 

  26. Thaochan N, Drew RAI, Hughes JM, Vijaysegaran S, Chinajariyawong A (2010) Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J Insect Sci 10: 131. doi: insectscience.org/10.131

  27. Behar A, Jurkevitch E, Yuval B (2008) Bringing back the fruit into fruit fly–bacteria interactions. Mol Ecol 17:1375–1386. doi:10.1111/j.1365-294X.2008.03674.x

    Article  CAS  PubMed  Google Scholar 

  28. Aharon Y, Pasternak Z, Ben-Yosef M, Behar A, Lauzon CR, Yuval B, Jurkevitch E (2013) Phylogenetic, metabolic, and taxonomic diversities shape Mediterranean fruit fly microbiotas during ontogeny. Appl Environ Microbiol 79:303–313. doi:10.1128/AEM. 02761-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wang A, Yao Z, Zheng W, Zhang H (2014) Bacterial Communities in the Gut and Reproductive Organs of Bactrocera minax (Diptera: Tephritidae) Based on 454 Pyrosequencing. PLoS One 9:e106988. doi:10.1371/journal.pone.0106988

    Article  PubMed Central  PubMed  Google Scholar 

  30. Meats A (1981) The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, in Australia. Proc Ecol Soc Aust 11:151–161

    Google Scholar 

  31. Rossler Y, Koltin Y (1976) The genetics of the Mediterranean fruitfly, Ceratitis capitata: three morphological mutations. Ann Ent Soc Am 69:604–608

    Article  Google Scholar 

  32. Drew RAI, Courtice AC, Teakle DS (1983) Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60:279–284. doi:10.1007/BF00376839

    Article  Google Scholar 

  33. Wong ACN, Ng P, Douglas AE (2011) Low diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol 13:1889–1900. doi:10.1111/j.1462-2920.2011.02511.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wong ACN, Chaston JM, Douglas AE (2013) The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922–1932. doi:10.1038/ismej.2013.86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Staubach F, Baines JF, Kuenzel S, Bik EM, Petrov DA (2013) Bacterial diversity associated with Drosophila in the laboratory and in the natural environment. PLoS One 8:e70749. doi:10.1371/journal.pone.0070749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679. doi:10.1002/bit.20347

    Article  CAS  PubMed  Google Scholar 

  37. Andersen SB, Hansen LH, Sapountzis P, Sørensen SJ, Boomsma JJ (2013) Specificity and stability of the AcromyrmexPseudonocardia symbiosis. Mol Ecol 22:4307–4321. doi:10.1111/mec.12380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Method 7:335–336. doi:10.1038/NMETH.F.303

    Article  CAS  Google Scholar 

  39. Reeder J, Knight R (2010) Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance distribution. Nat Method 7:668

    Article  CAS  Google Scholar 

  40. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504. doi:10.1101/gr.112730.110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi:10.1093/bioinformatics/btp636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  43. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi:10.1371/journal.pone.0009490

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM. 00062-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. doi:10.1128/AEM. 03006-05

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264. doi:10.2307/2333344

    Article  Google Scholar 

  47. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. doi:10.1128/AEM. 71.12.8228-8235.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Chao A, Chazdon RL, Colwell RK, Shen TJ (2006) Abundance based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361–371. doi:10.1111/j.1541-0420.2005.00489.x

    Article  PubMed  Google Scholar 

  49. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  50. Kolde R (2012) pheatmap: pretty heatmaps. R package version 0.6. 1

  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Morrow JL, Frommer M, Shearman DCA, Riegler M (2014) Tropical tephritid fruit fly community with high incidence of shared Wolbachia strains as platform for horizontal transmission of symbionts. Environ Microbiol 16:3622-3637. doi:10.1111/1462-2920.12382

  53. Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet 7:e1002272. doi:10.1371/journal.pgen.1002272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Morrow J, Scott L, Congdon B, Yeates D, Frommer M, Sved J (2000) Close genetic similarity between two sympatric species of tephritid fruit fly reproductively isolated by mating time. Evolution 54:899–910. doi:10.1111/j.0014-3820.2000.tb00090.x

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Yu H, Raphael K, Gilchrist AS (2003) Genetic delineation of sibling species of the pest fruit fly Bactrocera (Diptera: Tephritidae) using microsatellites. Bull Entomol Res 93:351–360. doi:10.1079/BER2003249

    Article  CAS  PubMed  Google Scholar 

  56. Wang H, Jin L, Zhang H (2011) Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J Appl Microbiol 110:1390–1401. doi:10.1111/j.1365-2672.2011.05001.x

    Article  CAS  PubMed  Google Scholar 

  57. Prabhakar CS, Sood P, Kanwar SS, Sharma PN, Kumar A, Mehta PK (2013) Isolation and characterization of gut bacteria of fruit fly, Bactrocera tau (Walker). Phytoparasitica 41:193–201. doi:10.1007/s12600-012-0278-5

    Article  Google Scholar 

  58. Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C, Epis S, Faye I, Sagnon NF, Alma A (2010) Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol 76:7444–7450. doi:10.1128/AEM. 01747-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Sacchetti P, Granchietti A, Landini S, Viti C, Giovannetti L, Belcari A (2008) Relationships between the olive fly and bacteria. J Appl Ent 132:682–689. doi:10.1111/j.1439-0418.2008.01334.x

    Article  Google Scholar 

  60. Cox CR, Gilmore MS (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75:1565–1576. doi:10.1128/IAI. 01496-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Christenson LD, Foote RH (1960) Biology of fruit flies. Annu Rev Entomol 5:171–192. doi:10.1146/annurev.en.05.010160.001131

    Article  Google Scholar 

  62. Ryu J-H, Kim S-H, Lee H-Y, Bai JY, Nam Y-D, Bae J-W, Lee DG, Shin SC, Ha E-M, Lee W-J (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782. doi:10.1126/science.1149357

    Article  CAS  PubMed  Google Scholar 

  63. Husseneder C, Collier RE (2009) Paratransgenesis in termites. In: Bourtzis K, Miller TA (eds) Insect Symbiosis. Boca Raton, FL, pp 361–376

    Google Scholar 

  64. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4:e6225. doi:10.1371/journal.pone.0006225

    Article  PubMed Central  PubMed  Google Scholar 

  65. Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832. doi:10.1016/j.ibmb.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  66. Shen GM, Dou W, Huang Y, Jiang XZ, Smagghe G, Wang JJ (2013) In silico cloning and annotation of genes involved in the digestion, detoxification and RNA interference mechanism in the midgut of Bactrocera dorsalis [Hendel (Diptera: Tephritidae)]. Insect Mol Biol 22:354–365. doi:10.1111/imb.12026

    Article  CAS  PubMed  Google Scholar 

  67. Morrow JL, Riegler M, Frommer M, Shearman DCA (2014) Expression patterns of sex-determination genes in single male and female embryos of two Bactrocera fruit fly species during early development. Insect Mol Biol 23:754–767. doi:10.1111/imb.12123

    Article  CAS  PubMed  Google Scholar 

  68. Morrow JL, Riegler M, Gilchrist AS, Shearman DCA, Frommer M (2014) Comprehensive transcriptome analysis of early male and female Bactrocera jarvisi embryos. BMC Genet 15:S7. doi:10.1186/1471-2156-15-S2-S7

    Article  PubMed Central  PubMed  Google Scholar 

  69. Raphael KA, Shearman DCA, Gilchrist AS, Sved JA, Morrow JL, Sherwin WB, Riegler M, Frommer M (2014) Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique. BMC Genet 15:S9. doi:10.1186/1471-2156-15-S2-S9

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Goran Lopaticki for maintenance of the UWS laboratory stocks, Alfie Meats for the wild tobacco fruit fly collection in the field, Sybilla Oczkowicz for the QDAFF fly stocks, Ian Lacey for the DAFWA fly stock samples, Caroline Janitz and John Keyse from the Hawkesbury Institute for the Environment, University of Western Sydney Next-Generation Sequencing Facility for 454 sequencing and support, and Barbara Drigo for assistance with analyses. JLM was supported by an Australian Postgraduate and F.G. Swain Award and MR by research funds from HIE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. L. Morrow or M. Riegler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 138 kb)

ESM 2

(PDF 108 kb)

ESM 3

(PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrow, J.L., Frommer, M., Shearman, D.C.A. et al. The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation. Microb Ecol 70, 498–508 (2015). https://doi.org/10.1007/s00248-015-0571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0571-1

Keywords

Navigation