Skip to main content

Advertisement

Log in

Increasing the Richness of Culturable Arsenic-Tolerant Bacteria from Theonella swinhoei by Addition of Sponge Skeleton to the Growth Medium

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 27 February 2016

Abstract

Theonella swinhoei is an arsenic hyper-accumulator sponge, harboring a multitude of associated bacteria. These bacteria reside in the mesohyl, the dense extracellular matrix of the sponge. Previous elemental analysis of separated cell fractions from the sponge had determined that arsenic is localized to the associated bacteria. Subsequently, sponge-associated arsenic-tolerant bacteria were isolated here and grouped into 15 operational taxonomic units (OTUs, 97 % similarity). Both culture-dependent and culture-independent work had revealed that T. swinhoei harbors a highly diverse bacterial community. It was thus hypothesized the acclimation of bacteria in the presence of a sponge skeleton, better mimicking its natural environment, would increase the yield of isolation of sponge-associated bacteria. Using seven modularly designed media, 380 bacteria isolates were grown and grouped into 22 OTUs. Inclusion of sponge skeleton in the growth medium promoted bacterial growth in all seven media, accounting for 20 of the 22 identified OTUs (the other two in a medium without skeleton). Diversity and richness indices were calculated for each treatment or combination of treatments with shared growth parameters. Integrating data inherent in the modularly designed media with the ecological indices led to the formation of new hypotheses regarding the aeration conditions and expected arsenic form in situ. Both aerobic and anoxic conditions are expected to occur in the sponge (temporally and/or spatially). Arsenate is expected to be the dominant (or even the only) arsenic form in the sponge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ilan M, Gugel J, Van Soest RWM (2004) Taxonomy, reproduction and ecology of new and known Red Sea sponges. Sarsia 89(6):388–410

    Article  Google Scholar 

  2. Bewley CA, Faulkner DJ (1995) Theonegramide, an antifungal glycopeptide from the Philippine Lithistid sponge Theonella swinhoei. J Org Chem 60(8):2644–2644

    Article  CAS  Google Scholar 

  3. Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52(7):716–722

    Article  CAS  PubMed  Google Scholar 

  4. Okada Y et al (2002) Nagahamide A, an antibacterial depsipeptide from the marine sponge Theonella swinhoei. Org Lett 4(18):3039–3042

    Article  CAS  PubMed  Google Scholar 

  5. Piel J et al (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci U S A 101(46):16222–16227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt EW et al (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136(6):969–977

    Article  CAS  Google Scholar 

  7. Wilson MC et al (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506(7486):58–62

    Article  CAS  PubMed  Google Scholar 

  8. Carmely S, Kashman Y (1985) Structure of swinholide-A, a new macrolide from the marine sponge theonella swinhoei. Tetrahedron Lett 26(4):511–514

    Article  CAS  Google Scholar 

  9. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55(2):167–177

    Article  CAS  PubMed  Google Scholar 

  10. Magnino G et al (1999) Endobionts of the coral reef sponge Theonella swinhoei (Porifera, Demospongiae). Invertebr Biol 118(3):213–220

    Article  Google Scholar 

  11. Taylor MW et al (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hentschel U et al (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68(9):4431–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmitt S et al (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6(3):564–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lavy A et al (2014) Implementing sponge physiological and genomic information to enhance the diversity of its culturable associated bacteria. Fems Microbiol Ecol 87(2):16

    Google Scholar 

  15. Mayzel B, Aizenberg J, Ilan M (2014) The elemental composition of Demospongiae from the Red Sea, Gulf of Aqaba. PLoS One 9(4):e95775

    Article  PubMed  PubMed Central  Google Scholar 

  16. Keren R, et al (2015) Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations. Front Microbiol 6

  17. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764

    Article  CAS  Google Scholar 

  18. Neff JM (1997) Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16(5):917–927

    CAS  Google Scholar 

  19. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300(5621):939–944

    Article  CAS  PubMed  Google Scholar 

  20. Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23(5):615–627

    Article  CAS  PubMed  Google Scholar 

  21. Liao VH-C et al (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123(1-2):20–29

    Article  CAS  PubMed  Google Scholar 

  22. Fan H et al (2008) Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105(2):529–539

    Article  CAS  PubMed  Google Scholar 

  23. Tazaki K et al (2003) FeAs2 biomineralization on encrusted bacteria in hot springs: an ecological role of symbiotic bacteria. Can J Earth Sci 40(11):1725–1738

    Article  CAS  Google Scholar 

  24. Newman DK, Beveridge TJ, Morel F (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63(5):2022–8

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghodsi H et al (2011) Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. Afr J Microbiol Res 5(32):5889–5895

    CAS  Google Scholar 

  26. Shakya S et al (2012) Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. J Environ Manag 95:S250–S255

    Article  CAS  Google Scholar 

  27. Paez-Espino D et al (2009) Microbial responses to environmental arsenic. Biometals 22(1):117–130

    Article  CAS  PubMed  Google Scholar 

  28. Chen SX, Shao ZZ (2009) Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 13(1):39–48

    Article  CAS  PubMed  Google Scholar 

  29. Heinrich-Salmeron A et al (2011) Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Appl Environ Microbiol 77(13):4685–4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun W et al (2010) Anaerobic oxidation of arsenite linked to chlorate reduction. Appl Environ Microbiol 76(20):6804–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dowdle P, Laverman A, Oremland R (1996) Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Appl Environ Microbiol 62(5):1664–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Müller WEG (2003) The origin of metazoan complexity: Porifera as integrated animals. Integr Comp Biol 43(1):3–10

    Article  PubMed  Google Scholar 

  33. Hooper JNA (2000) Sponguide. Guide to sponge collection and identification, version August

  34. Sipkema D et al (2011) Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol 77(6):2130–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194(16):4151–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cole JR et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marchesi JR et al (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64(6):2333–2333

    CAS  PubMed Central  Google Scholar 

  38. Cole JR et al (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35(Database issue):D169–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Q et al (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim OS et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(Pt 3):716–21

    Article  CAS  PubMed  Google Scholar 

  42. Guindon S et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–21

    Article  CAS  PubMed  Google Scholar 

  43. Darriba D et al (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9; Available from: http://purl.oclc.org/estimates

  45. Chao A (1987) Estimating the population size for capture recapture data with unequal catchability. Biometrics 43(4):783–791

    Article  CAS  PubMed  Google Scholar 

  46. Magurran AE (2004) Measuring biological diversity. Measuring biological diversity. Blackwell. i-viii, 1-256

  47. Magurran AE (1988) Ecological diversity and its measurement, vol 168. Princeton University Press, Princeton

    Book  Google Scholar 

  48. Haegeman B et al (2013) Robust estimation of microbial diversity in theory and in practice. ISME J 7:1092–1101

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mulder CPH et al (2004) Species evenness and productivity in experimental plant communities. Oikos 107(1):50–63

    Article  Google Scholar 

  50. Hamady M, Lozupone C, Knight R (2009) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4(1):17–27

    Article  PubMed  PubMed Central  Google Scholar 

  51. Giardine B et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15(10):1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blankenberg D, et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. In: Ausubel FM, et al (eds) Current protocols in molecular biology. Chapter 19: p. Unit 19.10.1-21

  53. Goecks J, et al (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8)

  54. Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol 5(10):820–826

    Article  CAS  PubMed  Google Scholar 

  55. Taylor GT, Gulnick JD (1996) Enhancement of marine bacterial growth by mineral surfaces. Can J Microbiol 42(9):911–918

    Article  CAS  Google Scholar 

  56. Dalton HM, March PE (1998) Molecular genetics of bacterial attachment and biofouling. Curr Opin Biotechnol 9(3):252–255

    Article  CAS  PubMed  Google Scholar 

  57. Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34(9):577–588

    Article  CAS  PubMed  Google Scholar 

  58. Mesa J et al (2015) Scouting contaminated estuaries: heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Mar Pollut Bull 90(1–2):150–159

    Article  CAS  PubMed  Google Scholar 

  59. Takeuchi M et al (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127(3):434–442

    Article  CAS  PubMed  Google Scholar 

  60. Villegas-Torres MF et al (2011) Horizontal arsC gene transfer among microorganisms isolated from arsenic polluted soil. Int Biodeterior Biodegrad 65(1):147–152

    Article  CAS  Google Scholar 

  61. Taylor MW, Schupp PJ, Dahllof I et al (2004) Host specificity in marine spongeassociated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6(2):121–130

  62. Shapiro BJ, Polz MF (2014) Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol 22(5):235–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nithya C, Pandian SK (2010) Isolation of heterotrophic bacteria from Palk Bay sediments showing heavy metal tolerance and antibiotic production. Microbiol Res 165(7):578–593

    Article  CAS  PubMed  Google Scholar 

  64. Thomulka KW, McGee DJ, Lange JH (1993) Detection of biohazardous materials in water by measuring bioluminescence reduction with the marine organism Vibrio harveyi. J Environ Sci Health A: Environ Sci Eng Toxicol 28(9):2153–2166

    Google Scholar 

  65. Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158(2):128–137

    Article  CAS  PubMed  Google Scholar 

  66. Ordóñez E et al (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71(10):6206–6215

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wysocki R, Bobrowicz P, Ul/aszewski S (1997) The saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272(48):30061–30066

    Article  CAS  PubMed  Google Scholar 

  68. Stolz JF, Basu P, Oremland RS (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5(4):201–207

    Article  CAS  PubMed  Google Scholar 

  69. Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal. Ind Ecotoxicol 22(2):363–376

    Article  CAS  Google Scholar 

  70. Bergman O (2009) Marine based cultivation of sponges and isolation of their associated bacteria, as first steps towards the accumulation of bioactive marine products, in Department of Zoology. Tel Aviv University, Tel Aviv, p 100

    Google Scholar 

  71. Kirk MF et al (2004) Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 32(11):953–956

    Article  Google Scholar 

  72. Saunders JA et al (2008) Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl Geochem 23(11):3205–3214

    Article  CAS  Google Scholar 

  73. Hoeft SE et al (2004) Dissimilatory arsenate reduction with sulfide as electron donor: experiments with mono lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl Environ Microbiol 70(5):2741–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kulp TR et al (2006) Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles lakes, California. Appl Environ Microbiol 72(10):6514–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37(14):3379–3389

    Article  CAS  PubMed  Google Scholar 

  76. Teclu D et al (2008) Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res 42(19):4885–4893

    Article  CAS  PubMed  Google Scholar 

  77. Kirk MF et al (2010) Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochim Cosmochim Acta 74(9):2538–2555

    Article  CAS  Google Scholar 

  78. Castro JM et al (1999) Stimulation of sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic wastes. Water Environ Res 71(2):218–223

    Article  CAS  Google Scholar 

  79. Friedrich AB et al (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. Fems Microbiol Ecol 38(2-3):105–113

    Article  CAS  Google Scholar 

  80. Giles EC et al (2013) Bacterial community profiles in low microbial abundance sponges. Fems Microbiol Ecol 83(1):232–241

    Article  CAS  PubMed  Google Scholar 

  81. Hoffmann F et al (2005) An anaerobic world in sponges. Geomicrobiol J 22(1-2):1–10

    Article  Google Scholar 

  82. Fuerst JA (2014) Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 98(17):7331–7347

    Article  CAS  PubMed  Google Scholar 

  83. Taylor MW et al (2007) Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J 1(3):187–190

    Article  PubMed  Google Scholar 

  84. Simister RL et al (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14(2):517–24

    Article  CAS  PubMed  Google Scholar 

  85. Schmitt S, Hentschel U, Taylor MW (2011) Deep sequencing reveals diversity and community structure of complex microbiota in five Mediterranean sponges. Hydrobiologia 687(1):341–351

    Article  Google Scholar 

  86. Schippers KJ et al (2012) Cultivation of sponges, sponge cells and symbionts. Adv Mar Biol 62:273–337

    Article  PubMed  Google Scholar 

  87. Imhoff JF, Trüper HG (1976) Marine sponges as habitats of anaerobic phototrophic bacteria. Microb Ecol 3(1):1–9

    Article  CAS  PubMed  Google Scholar 

  88. Bruck WM et al (2010) Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. ISME J 4(5):686–699

    Article  PubMed  Google Scholar 

  89. Yamaoka Y et al (2006) Characterization of water-soluble organoarsenic compounds in marine sponges. Appl Organomet Chem 20(9):545–548

    Article  CAS  Google Scholar 

  90. Yamaoka Y et al (2001) Arsenic compounds in marine sponge (Haliclona permolis, Halichondria japonica, Halichondria okadai and Haliclona sp white) from Seto Inland Sea, Japan. Appl Organomet Chem 15(4):261–265

    Article  CAS  Google Scholar 

  91. Yahel G et al (2007) In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol Oceanogr 52(1):428–440

    Article  CAS  Google Scholar 

  92. Yahel G et al (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48(1):141–149

    Article  Google Scholar 

  93. Hoffmann F, Larsen O, Tore Rapp H et al (2005) Oxygen dynamics in choanosomal sponge explants. Mar Biol Res 1(2):160–163

  94. Hoffmann F, Sauter E, Sachs O et al (2007) Oxygen distribution in Tentorium semisuberites and in its habitat in the Arctic deep sea. In: Custódio M et al (eds) Porifera research biodiversity, innovation and sustainability. Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, pp 379–382

  95. Schläppy ML et al (2010) Heterogeneous oxygenation resulting from active and passive flow in two Mediterranean sponges, Dysida avara and Chondrosia reniformis. Limnol Oceanogr 55(3):1289–1300

    Article  Google Scholar 

  96. Schonberg CHL, Hoffmann F, Gatti S (2003) Using microsensors to measure sponge physiology. Boll Mus Ist Biol Univ Genova 68:593–604

    Google Scholar 

  97. Fan L et al (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. P Natl Acad Sci Biol 109(27):E1878–E1887

    Article  CAS  Google Scholar 

  98. Kamke J et al (2013) Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J 7:2287–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hentschel U et al (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10(9):641–654

    Article  CAS  PubMed  Google Scholar 

  100. Siegl A et al (2011) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5(1):61–70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Interuniversity Institute, Eilat, and its staff for the ongoing support and use of their facilities. This work was partially supported by the Israel Science Foundation (grant number 957/14). Adi Lavy was funded by an Eshkol scholarship from the Israeli Ministry of Science, Technology and Space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Keren.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Ray Keren and Adi Lavy contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The experimental design used to culture T. swinhoei-associated, arsenic-tolerant bacteria. A) Media used for culturing sponge-associated arsenic-tolerant bacteria from T. swinhoei. The difference between each media pair is expressed. B) Flow chart depicting the acclimation design leading to 21 growth conditions. Media abbreviation is composed of three parts: AsV or AsIII for arsenate and arsenite supplementation respectively. Aeration state is expresses as “O” for aerobic treatments and “an” for anoxic treatments. Media ending with “C” were supplemented with a carbohydrate mix while the others were supplemented with bicarbonate. S, N, and L stand for sulfide, nitrate, and light respectively follows (GIF 128 kb)

High resolution image (EPS 2850 kb)

Table S1

(PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keren, R., Lavy, A. & Ilan, M. Increasing the Richness of Culturable Arsenic-Tolerant Bacteria from Theonella swinhoei by Addition of Sponge Skeleton to the Growth Medium. Microb Ecol 71, 873–886 (2016). https://doi.org/10.1007/s00248-015-0726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0726-0

Keywords

Navigation