Skip to main content

Advertisement

Log in

Do Endophytes Promote Growth of Host Plants Under Stress? A Meta-Analysis on Plant Stress Mitigation by Endophytes

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Endophytes are microbial symbionts living inside plants and have been extensively researched in recent decades for their functions associated with plant responses to environmental stress. We conducted a meta-analysis of endophyte effects on host plants’ growth and fitness in response to three abiotic stress factors: drought, nitrogen deficiency, and excessive salinity. Ninety-four endophyte strains and 42 host plant species from the literature were evaluated in the analysis. Endophytes increased biomass accumulation of host plants under all three stress conditions. The stress mitigation effects by endophytes were similar among different plant taxa or functional groups with few exceptions; eudicots and C4 species gained more biomass than monocots and C3 species with endophytes, respectively, under drought conditions. Our analysis supports the effectiveness of endophytes in mitigating drought, nitrogen deficiency, and salinity stress in a wide range of host species with little evidence of plant-endophyte specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

List of the papers processed in the analysis. [5, 23–26, 34–39, 43, 45, 47–54, 60–106]

  1. Dobereiner J (1992) History and new perspectives of diazotrophs in association with nonleguminous plants. Symbiosis 13:1–13

    Google Scholar 

  2. Rosegrant MW, Ringler C, Zhu T (2009) Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34:205–222. https://doi.org/10.1146/annurev.environ.030308.090351

  3. Ryan RP, Germaine K, Franks A, et al. (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

  4. Bulgarelli D, Schlaeppi K, Spaepen S, et al. (2013) Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

  5. Chang P, Gerhardt KE, Huang X-D, et al. (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16:1133–1147. https://doi.org/10.1080/15226514.2013.821447

  6. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl. Microbiol. Biotechnol. 99:2955–2965. https://doi.org/10.1007/s00253-015-6487-3

  7. Santoyo G, Moreno-Hagelsieb G, del Carmen O-MM, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol. Res. 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

  8. Arnqvist G, Wooster D (1995) Meta-analysis: synthesizing research findings in ecology and evolution. Trees 10:236

  9. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 190:783–793. https://doi.org/10.1111/j.1469-8137.2010.03611.x

  10. Omacini M, Semmartin M, Pérez LI, Gundel PE (2012) Grass–endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl. Soil Ecol. 61:273–279. https://doi.org/10.1016/j.apsoil.2011.10.012

  11. Mayerhofer MS, Kernaghan G, Harper K a. (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128. https://doi.org/10.1007/s00572-012-0456-9

  12. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to Image J: 25 years of image analysis. Nat. Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

  13. R Core team (2016) R Core Team. R A Lang Environ Stat Comput R Found Stat Comput, Vienna, Austria ISBN 3-900051-07-0, URL http//wwwR-project.org/55:275–286

  14. Crawley JM (2013) The R book second edition. CRAN. https://doi.org/10.1002/9780470515075

  15. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36:1–48

  16. Rosenberg MS (2005) The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution (N Y) 59:464–468. https://doi.org/10.1002/(SICI)1097-0177(199909)216:1<1::AID-DVDY1>3.0.CO;2-T

  17. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol. 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

  18. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84:11–18. https://doi.org/10.1007/s00253-009-2092-7

  19. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49(49):291–315. https://doi.org/10.1146/annurev-phyto-080508-081831

  20. Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol. 32:297–303. doi:10.1016/j.tibtech.2014.03.009

  21. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem. Biol. 19:792–798. https://doi.org/10.1016/j.chembiol.2012.06.004

  22. Doty SL, Oakley B, Xin G, et al. (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

  23. Knoth JL, Kim S-H, Ettl GJ, Doty SL (2013) Effects of cross host species inoculation of nitrogen-fixing endophytes on growth and leaf physiology of maize. Glob Chang Biol Bioenergy 5:408–418. https://doi.org/10.1111/gcbb.12006

  24. Khan Z, Guelich G, Phan H, et al. (2012) Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agron 2012:1–11. https://doi.org/10.5402/2012/890280

  25. Khan Z, Rho H, Firrincieli A, et al. (2016) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47. https://doi.org/10.1016/j.cpb.2016.08.001

  26. Kandel SL, Herschberger N, Kim SH, Doty SL (2015) Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci. 55:1765. https://doi.org/10.2135/cropsci2014.08.0570

  27. da Silva DP, Castañeda-Ojeda MP, Moretti C, et al. (2014) Bacterial multispecies studies and microbiome analysis of a plant disease. Microbiol (United Kingdom) 160:556–566. https://doi.org/10.1099/mic.0.074468-0

  28. Lambers H (2008) Plant physiological ecology, 2nd edn. Springer, New York,

  29. Worchel ER, Giauque HE, Kivlin SN (2013) Fungal symbionts alter plant drought response. Microb. Ecol. 65:671–678. https://doi.org/10.1007/s00248-012-0151-6

  30. Kivlin SN, Emery SM, Rudgers J a. (2013) Fungal symbionts alter plant responses to global change. Am. J. Bot. 100:1445–1457. https://doi.org/10.3732/ajb.1200558

  31. Chandrasekaran M, Boughattas S, Hu S, et al. (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza:611–625. https://doi.org/10.1007/s00572-014-0582-7

  32. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 29:319–343

  33. Schulz B, Boyle C (2005) The endophytic continuum. Mycol. Res. 109:661–686. https://doi.org/10.1017/S095375620500273X

  34. Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184. https://doi.org/10.3852/mycologia.99.2.175

  35. Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222. https://doi.org/10.1016/S1002-0160(11)60120-3

  36. Nia SH, Zarea MJ, Rejali F, Varma a. (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J. Saudi Soc. Agric. Sci. 11:113–121. https://doi.org/10.1016/j.jssas.2012.02.001

  37. Patel D, Saraf M (2013) Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. Eur. J. Soil Biol. 55:47–54. https://doi.org/10.1016/j.ejsobi.2012.12.004

  38. Faeth SH, Helander ML, Saikkonen KT (2004) Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol. Lett. 7:304–313. https://doi.org/10.1111/j.1461-0248.2004.00578.x

  39. Marks S, Clay K (2007) Low resource availability differentially affects the growth of host grasses infected by fungal endophytes. Int. J. Plant Sci. 168:1269–1277. https://doi.org/10.1086/521834

  40. Ren A, Clay K (2009) Impact of a horizontally transmitted endophyte, Balansia henningsiana, on growth and drought tolerance of Panicum rigidulum. Int. J. Plant Sci. 170:599–608. https://doi.org/10.1086/597786

  41. Oberhofer M, Güsewell S, Leuchtmann A (2014) Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytol. 201:242–253. https://doi.org/10.1111/nph.12496

  42. Yin L, Ren a, Wei M, et al. (2014) Neotyphodium coenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int J Phytoremediation 16:235–246. doi:10.1080/15226514.2013.773275

  43. Song M, Chai Q, Li X, et al. (2015) An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387:153–165. https://doi.org/10.1007/s11104-014-2289-0

  44. Nadeem SM, Ahmad M, Zahir ZA, et al. (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32:429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005

  45. Zhang YP, Nan ZB (2007) Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. J. Agron. Crop Sci. 193:377–386. https://doi.org/10.1111/j.1439-037X.2007.00279.x

  46. Rodriguez RJ, Henson J, Van Volkenburgh E, et al. (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416. https://doi.org/10.1038/ismej.2007.106

  47. Redman RS, Kim YO, Woodward CJDA, et al. (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823. https://doi.org/10.1371/journal.pone.0014823

  48. Bu N, Li X, Li Y, et al. (2012) Effects of Na2CO3 stress on photosynthesis and antioxidative enzymes in endophyte infected and non-infected rice. Ecotoxicol. Environ. Saf. 78:35–40. https://doi.org/10.1016/j.ecoenv.2011.11.007

  49. Alikhani M, Khatabi B, Sepehri M, et al. (2013) A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Mol. BioSyst. 9:1498–1510. https://doi.org/10.1039/c3mb70069k

  50. Gond SK, Torres MS, Bergen MS, et al. (2015) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett. Appl. Microbiol. 60:392–399. https://doi.org/10.1111/lam.12385

  51. Siddikee MA, Glick BR, Chauhan PS, et al. (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol. Biochem. 49:427–434. https://doi.org/10.1016/j.plaphy.2011.01.015

  52. Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl. Soil Ecol. 61:255–263. https://doi.org/10.1016/j.apsoil.2011.10.006

  53. Straub D, Yang H, Liu Y, et al. (2013) Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30 T. J. Exp. Bot. 64:4603–4615. https://doi.org/10.1093/jxb/ert276

  54. Khan AL, Waqas M, Lee I-J (2015) Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. J. Plant Res. 128:259–268. https://doi.org/10.1007/s10265-014-0688-1

  55. Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107:1519–1532. https://doi.org/10.1007/s10482-015-0445-z

  56. Johnston-Monje D, Mousa W, Lazarovits G, Raizada MN (2014) Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC Plant Biol. 14:233. https://doi.org/10.1186/s12870-014-0233-3

  57. Gonzalo-Turpin H, Barre P, Gibert A, et al. (2010) Co-occurring patterns of endophyte infection and genetic structure in the alpine grass, Festuca eskia: implications for seed sourcing in ecological restoration. Conserv. Genet. 11:877–887. https://doi.org/10.1007/s10592-009-9927-8

  58. Emery SM, Rudgers JA (2013) Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes. Oecologia 173:1601–1612

  59. Jia RZ, Gu J, Tian CF, et al. (2008) Screening of high effective alfalfa rhizobial strains with a comprehensive protocol. Ann Microbiol 58:731–739

Further reading

  1. Jumpponen A, Trappe JM (1998) Performance of Pinus contorta inoculated with two strains of root endophytic fungus, Phialocephala fortinii: effects of synthesis system and glucose concentration. Can. J. Bot. 76:1205–1213. https://doi.org/10.1139/cjb-76-7-1205

  2. Cheplick GP, Perera a, Koulouris K (2000) Effect of drought on the growth of Lolium prenne genotypes with and without fungal endophytes. Funct. Ecol. 14:657–667

  3. Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colan ization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol. 154:131–145

  4. James EK, Gyaneshwar P, Mathan N, et al. (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant-Microbe Interact. 15:894–906. https://doi.org/10.1094/MPMI.2002.15.9.894

  5. Morse LJ, Day T a, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ. Exp. Bot. 48:257–268. https://doi.org/10.1016/S0098-8472(02)00042-4

  6. Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J. Appl. Microbiol. 100:938–945. https://doi.org/10.1111/j.1365-2672.2006.02843.x

  7. Anzhi R, Yubao G, Wei W, Jinlong W (2006) Photosynthetic pigments and photosynthetic products of endophyte-infected and endophyte-free Lollum perenne L. under drought stress conditions. Front Biol China 2:168–173.

  8. Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb. Ecol. 51:326–335. https://doi.org/10.1007/s00248-006-9039-7

  9. Donoso EP, Bustamante RO, Carú M, Niemeyer HM (2008) Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Appl. Environ. Microbiol. 74:1412–1417. https://doi.org/10.1128/AEM.02013-07

  10. Kannadan S, Rudgers J a. (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct. Ecol. 22:706–713. https://doi.org/10.1111/j.1365-2435.2008.01395.x

  11. Hahn H, McManus MT, Warnstorff K, et al. (2008) Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ. Exp. Bot. 63:183–199. https://doi.org/10.1016/j.envexpbot.2007.10.021

  12. Rudgers J a, Swafford AL (2009) Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic Appl Ecol 10:43–51. https://doi.org/10.1016/j.baae.2007.12.004

  13. Ren A, Clay K (2009) Impact of a horizontally transmitted endophyte, Balansia henningsiana, on growth and drought tolerance of Panicum rigidulum. Int. J. Plant Sci. 170:599–608. https://doi.org/10.1086/597786

  14. Cruz C, Martins-Loucao M, Varma A (2010) The influence of plant co-culture of tomato plants with piriformospora indica on biomass accumulation and stress tolerance. Acta Hortic. 868:123–128

  15. Ghimire SR, Craven KD (2011) Enhancement of switchgrass (Panicum virgatum L.) biomass production under drought conditions by the ectomycorrhizal fungus Sebacina vermifera. Appl. Environ. Microbiol. 77:7063–7067. https://doi.org/10.1128/AEM.05225-11

  16. Gilbert ME, Zwieniecki MA, Holbrook NM (2011) Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. J. Exp. Bot. 62:2875–2887. https://doi.org/10.1093/jxb/erq461

  17. Khan AL, Hamayun M, Ahmad N, et al. (2011) Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L. J. Microbiol. Biotechnol. 21:893–902. https://doi.org/10.4014/jmb.1103.03012

  18. Khan AL, Hamayun M, Radhakrishnan R, et al. (2012) Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus. Antonie Van Leeuwenhoek 101:267–279. https://doi.org/10.1007/s10482-011-9630-x

  19. Yule KM, Woolley JB, Rudgers J a. (2011) Water availability alters the tri-trophic consequences of a plant-fungal symbiosis. Arthropod Plant Interact. 5:19–27. https://doi.org/10.1007/s11829-010-9112-5

  20. Davitt AJ, Chen C, Rudgers J a. (2011) Understanding context-dependency in plant-microbe symbiosis: the influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission. Environ. Exp. Bot. 71:137–145. https://doi.org/10.1016/j.envexpbot.2010.11.004

  21. Knoth J, Kim S, Ettl G, Doty S (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol. 201:599–609. https://doi.org/10.1111/nph.12536

  22. Li X, Bu N, Li Y, et al. (2012) Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. J. Hazard. Mater. 213:55–61. https://doi.org/10.1016/j.jhazmat.2012.01.052

  23. Lin L, Guo W, Xing Y, et al. (2012) The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N 2 associated with micropropagated sugarcane plants. Appl. Microbiol. Biotechnol. 93:1185–1195. https://doi.org/10.1007/s00253-011-3618-3

  24. Lopez BR, Tinoco-Ojanguren C, Bacilio M, et al. (2012) Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environ. Exp. Bot. 81:26–36. https://doi.org/10.1016/j.envexpbot.2012.02.014

  25. Paz ICP, Santin RCM, Guimaraes AM, et al. (2012) Eucalyptus growth promotion by endophytic bacillus spp eucalyptus growth promotion by endophytic Bacillus spp. Genet. Mol. Res. 11:3711–3720. https://doi.org/10.4238/2012.August.17.9

  26. Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, et al. (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl. Soil Ecol. 61:264–272. https://doi.org/10.1016/j.apsoil.2012.01.006

  27. Waqas M, Khan AL, Kamran M, et al. (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773. https://doi.org/10.3390/molecules170910754

  28. Ghabooli M, Khatabi B, Ahmadi FS, et al. (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteome 94:289–301. https://doi.org/10.1016/j.jprot.2013.09.017

  29. Anand R, Chanway C (2013) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol. Fertil. Soils 49:235–239. https://doi.org/10.1007/s00374-012-0735-9

  30. Madhaiyan M, Peng N, Te NS, et al. (2013) Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels 6:140. https://doi.org/10.1186/1754-6834-6-140

  31. Mahmoud RS, Narisawa K (2013) A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen. PLoS One 8:1–8. https://doi.org/10.1371/journal.pone.0078746

  32. Ren A, Wei M, Yin L, et al. (2013) Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ. Exp. Bot. 108:71–78. https://doi.org/10.1016/j.envexpbot.2013.11.019

  33. Vázquez-de-Aldana BR, García-Ciudad A, García-Criado B, et al. (2013) Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca Rubra regardless of water availability. PLoS One 8:1–14. https://doi.org/10.1371/journal.pone.0084539

  34. Sen YL, Hameed A, Peng SY, et al. (2013) Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Appl. Soil Ecol. 66:40–47. https://doi.org/10.1016/j.apsoil.2013.02.001

  35. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80:160–167. https://doi.org/10.1016/j.plaphy.2014.04.003

  36. Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res. 169:83–98. https://doi.org/10.1016/j.micres.2013.06.003

  37. Qin S, Zhang YJ, Yuan B, et al. (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374:753–766. https://doi.org/10.1007/s11104-013-1918-3

  38. Yang B, Wang X-M, Ma H-Y, et al. (2014) Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Plant Growth Regul. 73:165–179

  39. Naveed M, Mitter B, Reichenauer TG, et al. (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 97:30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014

  40. Xia C, Zhang X, Christensen MJ, et al. (2015) Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecol. 16:26–33. https://doi.org/10.1016/j.funeco.2015.02.003

  41. Puri A, Padda KP, Chanway CP (2016) Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis 69:123–129. https://doi.org/10.1007/s13199-016-0385-z

  42. Lowman S, Kim-Dura S, Mei C, Nowak J (2016) Strategies for enhancement of switchgrass (Panicum virgatum L.) performance under limited nitrogen supply based on utilization of N-fixing bacterial endophytes. Plant Soil 405:47–63. https://doi.org/10.1007/s11104-015-2640-0

  43. Liu TZ, Zhang JM, Mao ZW, Li RJ (2016) Influence of endophytic diazotroph and nitrogen fertilization on the growth and turf quality of “ TifEagle ” bermudagrass. Eur. J. Hortic. Sci. 81:227–233

  44. Barnawal D, Bharti N, Tripathi A, et al. (2016) ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering Phytohormone generation. J. Plant Growth Regul. 35:553–564. https://doi.org/10.1007/s00344-015-9560-3

  45. Egamberdieva D, Jabborova D, Berg G (2016) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35–45. https://doi.org/10.1007/s11104-015-2661-8

  46. Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3:71–77. https://doi.org/10.1016/j.jarmap.2016.02.003

  47. Vahabi K, Dorcheh SK, Monajembashi S, et al. (2016) Stress promotes Arabidopsis-Piriformospora indica interaction. Plant Signal. Behav. 11:e1136763. https://doi.org/10.1080/15592324.2015.1136763

Download references

Acknowledgments

We gratefully acknowledge our previous and current graduate students in the lab at the time this meta-analysis was being prepared for publication: Matthew Flora-Tostado, Hannah Kinmonth-Schultz, Marlies Kovenock, Jennifer Hsiao, and Kyungdahm Yun. The USDA-NIFA grant 2012-68002-19824 supported this study.

Author information

Authors and Affiliations

Authors

Contributions

HR and SHK conceived the idea. HR, MH, SLK, and JC designed the analysis and collected the data. HR performed the analysis. SLD and SHK provided materials and resources. HR, MH, SLK, SLD, and SHK wrote the paper.

Corresponding author

Correspondence to Hyungmin Rho.

Electronic Supplementary Material

The interactive version of Fig. 4 with the full information about the meta-analysis is available (Fig. S1, “endo_host_heatmap.html”) online at:

Fig. S1

(HTML 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rho, H., Hsieh, M., Kandel, S.L. et al. Do Endophytes Promote Growth of Host Plants Under Stress? A Meta-Analysis on Plant Stress Mitigation by Endophytes. Microb Ecol 75, 407–418 (2018). https://doi.org/10.1007/s00248-017-1054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1054-3

Keywords

Navigation