Skip to main content
Log in

Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Maghemite and cobalt ferrite anionic magnetic nanoparticles enter tumor cells and can be used as heat sources when exposed to a high-frequency magnetic field. Comparative studies of the two particles enable to unravel the magnetic heating mechanisms (Néel relaxation vs. Brown relaxation) responsible for the cellular temperature rise, and also to establish a simple model, adjusted to the experimental results, allowing to predict the intracellular heating efficiency of iron oxide nanoparticles. Hence, we are able to derive the best nanoparticle design for a given material with a view to intracellular hyperthermia-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35:446–450

    Article  Google Scholar 

  • Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49:646–654

    Article  Google Scholar 

  • Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15261

    Article  ADS  Google Scholar 

  • DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, Adamson GN, Ivkov R (2005) Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 11:7087s–7092s

    Article  Google Scholar 

  • Dodd SJ, Williams M, Suhan JP, Williams DS, Koretsky AP, Ho C (1999) Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J 76:103–109

    Article  Google Scholar 

  • Fortin-Ripoche JP, Martina MS, Gazeau F, Menager C, Wilhelm C, Bacri JC, Lesieur S, Clement O (2006) Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239:415–424

    Article  Google Scholar 

  • Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. JACS 129:2628–2635

    Article  Google Scholar 

  • Hafeli UO (2004) Magnetically modulated therapeutic systems. Int J Pharm 277:19–24

    Article  Google Scholar 

  • Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357

    Article  ADS  Google Scholar 

  • Hilger I, Andra W, Hergt R, Hiergeist R, Schubert H, Kaiser WA (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575

    Google Scholar 

  • Hogemann D, Ntziachristos V, Josephson L, Weissleder R (2002) High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug Chem 13:116–121

    Article  Google Scholar 

  • Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T (2003) Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng 96:364–369

    Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  Google Scholar 

  • Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167–175

    Article  Google Scholar 

  • Jordan A, Wust P, Fahling H, John W, Hinz A, Felix R (1993) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 9:51–68

    Article  Google Scholar 

  • Jordan A, Scholz R, Wust P, Fahling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R (1997) Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 13:587–605

    Article  Google Scholar 

  • Jordan A, Scholz R, Wust P, Fakhling R, Felix R (1999a) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Mag Mag Mat 201:413–419

    Article  ADS  Google Scholar 

  • Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999b) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Mag Mag Mat 194:185–196

    Article  ADS  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  ADS  Google Scholar 

  • Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8:214–222

    Article  Google Scholar 

  • Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–84

    Article  Google Scholar 

  • Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  ADS  Google Scholar 

  • Sun EY, Josephson L, Kelly KA, Weissleder R (2006) Development of nanoparticle libraries for biosensing. Bioconjug Chem 17:109–113

    Article  Google Scholar 

  • Thiel A, Scheffold A, Radbruch A (1998) Immunomagnetic cell sorting–pushing the limits. Immunotechnology 4:89–96

    Article  Google Scholar 

  • Wang X, Gu H, Yang Z (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293:334–340

    Article  ADS  Google Scholar 

  • Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  Google Scholar 

  • Wilhelm C, Gazeau F, Bacri JC (2002a) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125

    Article  Google Scholar 

  • Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC (2002b) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18:8148–8155

    Article  Google Scholar 

  • Wilhelm C, Cebers A, Bacri JC, Gazeau F (2003) Deformation of intracellular endosomes under a magnetic field. Eur Biophys J 32:655–660

    Article  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jean-Claude Bacri for fruitful discussions, Christine Ménager and Sophie Neveu for providing us with the nanoparticles, Christine Longin and Sophie Chat for assistance in electron microscopy and Jacques Servais for technical help. This work was supported by ACI n°145 NANOSCIENCE of the French Ministry of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortin, JP., Gazeau, F. & Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J 37, 223–228 (2008). https://doi.org/10.1007/s00249-007-0197-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0197-4

Keywords

Navigation