Skip to main content

Advertisement

Log in

Membrane property abnormalities in simulated cases of mild systematic and severe focal demyelinating neuropathies

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The investigation of multiple nerve membrane properties by mathematical models has become a new tool to study peripheral neuropathies. In demyelinating neuropathies, the membrane properties such as potentials (intracellular, extracellular, electrotonic) and indices of axonal excitability (strength-duration time constants, rheobases and recovery cycles) can now be measured at the peripheral nerves. This study provides numerical simulations of the membrane properties of human motor nerve fibre in cases of internodal, paranodal and simultaneously of paranodal internodal demyelinations, each of them mild systematic or severe focal. The computations use our previous multi-layered model of the fibre. The results show that the abnormally greater increase of the hyperpolarizing electrotonus, shorter strength-duration time constants and greater axonal superexcitability in the recovery cycles are the characteristic features of the mildly systematically demyelinated cases. The small decrease of the polarizing electrotonic responses in the demyelinated zone in turn leads to a compensatory small increase of these responses outside the demyelinated zone of all severely focally demyelinated cases. The paper summarizes the insights gained from these modeling studies on the membrane property abnormalities underlying the variation in clinical symptoms of demyelination in Charcot-Marie-Tooth disease type 1A, chronic inflammatory demyelinating polyneuropathy, Guillain-Barré syndrome and multifocal motor neuropathy. The model used provides an objective study of the mechanisms of these diseases which up till now have not been sufficiently well understood, because quite different assumptions have been given in the literature for the interpretation of the membrane property abnormalities obtained in hereditary, chronic and acquired demyelinating neuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ISD:

Internodal systematic demyelination

PSD:

Paranodal systematic demyelination

PISD:

Paranodal internodal systematic demyelination

IFD:

Internodal focal demyelination

PFD:

Paranodal focal demyelination

PIFD:

Paranodal internodal focal demyelination

References

  • Barohn RJ, Kissel JT, Warmolts JR, Mendell JR (1989) Chronic inflammatory demyelinating polyradiculoneuropathy; clinical characteristics, course and recommendations for diagnostic criteria. Arch Neurol 46:878–884

    Google Scholar 

  • Birouk N, Gouider R, Le Guern E, Gugenheim M, Tardieu S, Maisonobe T, Le Forestier N, Agid Y, Brice A, Bouche P (1997) Charcot-Marie-Tooth disease type 1A with 17p11.2 duplication. Clinical and electrophysiological phenotype study and factors influencing disease severity in 119 cases. Brain 120:813–823

    Article  Google Scholar 

  • Blight A (1985) Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a low resistance myelin sheath. Neuroscience 15:13–31

    Article  Google Scholar 

  • Bostock H (2006) MEMFIT: a computer program to aid interpretation of multiple excitability measurements on human motor axons. Clin Neurophysiol 117:S49–S111

    Article  Google Scholar 

  • Bostock H, Baker M (1988) Evidence for two types of potassium channels in human motor axons in vivo. Brain Res 462:354–358

    Article  Google Scholar 

  • Bostock H, Baker M, Reid G (1991) Changes in excitability of human motor axons underlying post-ischaemic fasciculations: evidence for two stable states. J Physiol 441:537–557

    Google Scholar 

  • Bostock H, Burke D, Hales JP (1994) Differences in behavior of sensory and motor axons following release of ischaemia. Brain 117:225–234

    Article  Google Scholar 

  • Bostock H, Cikurel K, Burke D (1998) Threshold tracking techniques in the study of human peripheral nerve. Muscle Nerve 21:137–158

    Article  Google Scholar 

  • Cappelen-Smith C, Kuwabara S, Lin CS, Mogyoros I, Burke D (2001) Membrane properties in chronic inflammatory demyelinating polyneuropathy. Brain 124:2439–2447

    Article  Google Scholar 

  • Chang AP, England JD, Garcia CA, Summer AJ (1998) Focal conduction block in n-hexane polyneuropathy. Muscle Nerve 21:964–969

    Article  Google Scholar 

  • Choudhury D, Arora D (2001) Axonal Guillain-Barré syndrome: a critical review. Acta Neurol Scand 103:267–277

    Article  Google Scholar 

  • Delmont E, Azulay JP, Giorgi R, Attarian S, Verschueren A, Uzenot D, Pouget J (2006) Multifocal motor neuropathy with and without conduction block: a single entity? Neurology 67:592–596

    Article  Google Scholar 

  • Dioszeghy P, Stålberg E (1992) Changes in motor and sensory nerve conduction parameters with temperature in normal and diseased nerve. Electroencephalogr Clin Neurophysiol 85:229–235

    Article  Google Scholar 

  • Donofrio PD, Albers JW (1990) Polyneuropathy: classification by nerve conduction studies and electromyography. Muscle Nerve 13:889–903

    Article  Google Scholar 

  • Dyck PJ, Chance P, Lebo R, Camey AJ (1993) Hereditary motor and sensory neuropathies. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn, WB Saunders, Philadelphia, pp 1094–1136

    Google Scholar 

  • Feasby TE, Gilbert JJ, Brown WF, Bolton CF, Hahn AF, Koopman WF, Zochodne DW (1986) An acute axonal form of Guillain-Barré polyneuropathy. Brain 109:1115–1126

    Article  Google Scholar 

  • Ganapathy L, Clark JW (1987) Extracellular currents and potentials of the active myelinated nerve fibre. Biophys J 52:749–761

    Article  Google Scholar 

  • Gorson KC, Ropper AH, Adelman LS, Weinberg DH (2000) Influence of diabetes mellitus on chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 23:37–48

    Article  Google Scholar 

  • Griffin JW, Li CY, Ho TW, Xue P, Macko C, Gao CY, Yang C, Tian M, Mishu B, Cornblath DR (1995) Guillain-Barré syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain 118:575–595

    Article  Google Scholar 

  • Halter J, Clark J (1991) A distributed-parameter model of the myelinated nerve fibre. J Theor Biol 148:345–382

    Article  Google Scholar 

  • Kaji R (2003) Physiology of conduction block in multifocal motor neuropathy and other demyelinating neuropathies. Muscle Nerve 27:285–296

    Article  Google Scholar 

  • Katz JS, Saperstain DS, Gronseth G, Amato AA, Barohn RJ (2000) Distal acquired demyelinating symmetric neuropathy. Neurology 54:615–620

    Google Scholar 

  • Kiernan MC, Burke D, Andersen KV, Bostock H (2000) Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 23:399–409

    Article  Google Scholar 

  • Kuwabara S, Nakajima M, Tsuboi Y, Hirayama K (1993) Multifocal conduction block in n-hexane neuropathy. Muscle Nerve 16:1416–1417

    Google Scholar 

  • Kuwabara S, Ogawara K, Sung JY, Mori M, Kanai K, Hattori T, Yuki N, Lin CS, Burke D, Bostock H (2002) Differences in membrane properties of axonal and demyelinating Guillain-Barré syndromes. Ann Neurol 52:180–187

    Article  Google Scholar 

  • Kuwabara S, Bostock H, Ogawara K, Sung JY, Kanai K, Mori M, Hattori T, Burke D (2003) The refractory period of transmission is impaired in axonal Guillain-Barré syndrome. Muscle Nerve 28:683–689

    Article  Google Scholar 

  • Nodera H, Kaji R (2006) Nerve excitability testing and its clinical application to neuromuscular diseases. Clin Neurophysiol 117:1902–1916

    Article  Google Scholar 

  • Nodera H, Bostock H, Kuwabara S, Sakamoto T, Asanuma K, Sung JY, Ogawara K, Hattori N, Hirayama M, Sobue G, Kaji R (2004) Nerve excitability properties in Charcot-Marie-Tooth disease type A1. Brain 27:203–211

    Article  Google Scholar 

  • Priori A, Bossi B, Ardolino G, Bertolasi L, Carpo M, Nobile-Orazio E, Barbieri S (2005) Pathophysiological heterogeneity of conduction blocks in multifocal motor neuropathy. Brain 128:1642–1648

    Article  Google Scholar 

  • Schoonhoven R, Stegeman DF (1995) Models and analysis of compound nerve action potentials. Crit Rev Biomed Eng 19:47–111

    Google Scholar 

  • Schwarz JR, Reid G, Bostock H (1995) Action potentials and membrane currents in the human node of Ranvier. Pflügers Arch 430:283–292

    Article  Google Scholar 

  • Stegeman DF, de Weerd JPC, Eijkman EG (1979) A volume conductor study of compound action potentials of nerves in situ: the forward problem. Biol Cybern 33:97–111

    Article  MATH  Google Scholar 

  • Stephanova DI (2001) Myelin as longitudinal conductor: a multi-layered model of the myelinated human motor nerve fibre. Biol Cybern 84:301–308

    Article  Google Scholar 

  • Stephanova DI, Alexandrov AS (2006) Simulated mild systematic and focal demyelinating neuropathies: membrane property abnormalities. J Integr Neurosci 5:595–623

    Article  Google Scholar 

  • Stephanova DI, Bostock H (1995) A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents. Biol Cybern 73:275–280

    Article  MATH  Google Scholar 

  • Stephanova DI, Bostock H (1996) A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of electrotonic potentials and ionic currents. Biol Cybern 74:543–547

    Article  MATH  Google Scholar 

  • Stephanova DI, Chobanova M (1997) Action potentials and ionic currents through paranodally demyelinated human motor nerve fibres: computer simulations. Biol Cybern 76:311–314

    Article  MATH  Google Scholar 

  • Stephanova DI, Daskalova M (2005) Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part II. Paranodal demyelination. Clin Neurophysiol 116:1159–1166

    Article  Google Scholar 

  • Stephanova DI, Daskalova M (2005) Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination. Clin Neurophysiol 116:2334–2341

    Article  Google Scholar 

  • Stephanova D, Kossev A (1997) Action potentials and ionic currents through internodally demyelinated human motor nerve fibres. I. Computer simulations. Comp Rend l’Acad Bulg Sci 50(3):107–110

    Google Scholar 

  • Stephanova DI, Mileva K (2000) Different effects of blocked potassium channels on action potentials, accommodations, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations. Biol Cybern 83:161–167

    Article  Google Scholar 

  • Stephanova D, Trayanova N, Gydikov A, Kossev A (1989) Extracellular potentials of a single myelinated nerve fiber in an unbounded volume conductor. Biol Cybern 61:205–210

    Article  Google Scholar 

  • Stephanova DI, Daskalova M, Alexandrov AS (2005) Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I. Clin Neurophysiol 116:1153–1158

    Article  Google Scholar 

  • Stephanova DI, Daskalova M, Alexandrov AS (2006a) Differences in membrane properties in simulated cases of demyelinating neuropathies. Internodal focal demyelinations without conduction block. J Biol Phys 32:61–71

    Article  Google Scholar 

  • Stephanova DI, Daskalova M, Alexandrov AS (2006b) Differences in membrane properties in simulated cases of demyelinating neuropathies. Internodal focal demyelinations with conduction block. J Biol Phys 32:129–144

    Article  Google Scholar 

  • Stephanova DI, Alexandrov AS, Kossev A, Christova L (2007) Simulating focal demyelinating neuropathies: membrane property abnormalities. Biol Cybern 96:195–208

    Article  MATH  Google Scholar 

  • Sung JY, Kuwabara S, Kaji R, Ogawara K, Mori M, Kanai K, Nodera H, Hattori T, Bostock H (2004) Threshold electrotonus in chronic inflammatory demyelinating polyneuropathy: correlation with clinical profiles. Muscle Nerve 29:28–37

    Article  Google Scholar 

  • Weiss G (1901) Sur la possibilité de rendre comparables entre eux les appareils servant à I’excitation électrique. Arch Ital Biol 35:413–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Stephanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephanova, D., Daskalova, M. Membrane property abnormalities in simulated cases of mild systematic and severe focal demyelinating neuropathies. Eur Biophys J 37, 183–195 (2008). https://doi.org/10.1007/s00249-007-0215-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0215-6

Keywords

Navigation