Skip to main content
Log in

Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Lateral membrane heterogeneity, in the form of lipid rafts and microdomains, is currently implicated in cell processes including signal transduction, endocytosis, and cholesterol trafficking. Various biophysical techniques have been used to detect and characterize lateral membrane domains. Among these, Förster resonance energy transfer (FRET) has the crucial advantage of being sensitive to domain sizes smaller than 50-100 nm, below the resolution of optical microscopy but, apparently, similar to those of rafts in cell membranes. In the last decade, several formalisms for the analysis of FRET in heterogeneous membrane systems have been derived and applied to the study of microdomains. They are critically described and illustrated here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSM:

Brain sphingomyelin

CFM:

Confocal fluorescence microscopy

Chol:

Cholesterol

Dansyl-PC:

2-[12-[(5-Dimethylamino-1-naphthalenesulfonyl)amino]dodecanoyl]-PC

DHE:

Dehydroergosterol

DiIC12(3):

1,1′-Didodecyl-3,3,3′,3′-tetramethylindocarbocyanine

DiIC18(3):

1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DPH:

1,6-Diphenylhexatriene

DPH-PC:

1-Palmitoyl-2-[3-(diphenylhexatrienyl)propanoyl]-sn-glycero-3-phosphocholine

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DPPS:

1,2-Dipalmitoyl-sn-glycero-3-phosphoserine

DSPC:

1,2-Distearoyl-sn-glycero-3-phosphocholine

FRET:

Förster resonance energy transfer

ld:

Liquid disordered

lo:

Liquid ordered

Marina Blue:

1-[[(6,8-Difluoro-7-hydroxy-4-methyl-2-oxo-2H-1-benzopyran-3-yl)acetyl]oxy]

NBD:

7-Nitrobenz-2-oxa-1,3-diazol-4-yl

NBD-DLPE:

N-NBD-1,2-dilauroyl-sn-glycero-3-phosphoethanolamine

NBD-DMPE:

N-NBD-dimyristoylphosphatidylethanolamine

NBD-DPPE:

N-NBD-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine

NBD-PC:

1-Palmitoyl-2-[12-NBD-aminododecanoyl]-sn-glycero-3-phosphocholine

PC:

Phosphatidylcholine

PI(4,5)P2 :

Phosphatidylinositol-4,5-bisphosphate

PIP2 :

Phosphatidylinositol bisphosphate

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPE:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

PS:

Phosphatidylserine

PSM:

Palmitoyl-SM

RDF:

Radial distribution function

Rh-DMPE:

N-(lissamine–rhodamine B)-dimyristoylphosphatidylethanolamine

Rh-DOPE:

N-(lissamine–rhodamine B)-dioleoylphosphatidylethanolamine

Rh-DPPE:

N-(lissamine–rhodamine B)-dipalmitoylphosphoethanolamine

SM:

Sphingomyelin

t-PnA:

trans-Parinaric acid

References

  • Adair BD, Engelman DM (1994) Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 33:5539–5544

    Article  CAS  PubMed  Google Scholar 

  • Almeida PFF, Vaz WLC, Thompson TE (1992) Lateral diffusion in the liquid-phases of dimyristoylphosphatidylcholine cholesterol lipid bilayers—a free-volume analysis. Biochemistry 31:6739–6747

    Article  CAS  PubMed  Google Scholar 

  • Baumgart T, Hunt G, Farkas ER, Webb WW, Feigenson GW (2007) Fluorescence probe partitioning between lo/ld phases in lipid membranes. Biochim Biophys Acta 1768:2182–2194

    Article  CAS  PubMed  Google Scholar 

  • Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    Article  CAS  PubMed  Google Scholar 

  • Brown RE (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111:1–9

    CAS  PubMed  Google Scholar 

  • Brown AC, Towles KB, Wrenn SP (2007a) Measuring raft size as a function of membrane composition in PC-based systems: part I—binary systems. Langmuir 23:11180–11187

    Article  CAS  PubMed  Google Scholar 

  • Brown AC, Towles KB, Wrenn SP (2007b) Measuring raft size as a function of membrane composition in PC-based systems: part II—ternary systems. Langmuir 23:11188–11196

    Article  CAS  PubMed  Google Scholar 

  • Buboltz JT (2007) Steady-state probe-partitioning FRET: a simple and robust tool for the study of membrane phase behavior. Phys Rev E 76:021903

    Article  Google Scholar 

  • Buboltz JT, Bwalya C, Reyes S, Kamburov D (2007a) Stern–Volmer modeling of steady-state Förster energy transfer between dilute, freely diffusing membrane-bound fluorophores. J Chem Phys 127:215101

    Article  PubMed  Google Scholar 

  • Buboltz JT, Bwalya C, Williams K, Schutzer M (2007b) High-resolution mapping of phase behavior in a ternary lipid mixture: do lipid-raft phase boundaries depend on the sample preparation procedure? Langmuir 23:11968–11971

    Article  CAS  PubMed  Google Scholar 

  • Corry B, Jayatilaka D, Rigby P (2005) A flexible approach to the calculation of resonance energy transfer efficiency between multiple donors and acceptors in complex geometries. Biophys J 89:3822–3836

    Article  CAS  PubMed  Google Scholar 

  • Coutinho A, Loura LM, Fedorov A, Prieto M (2008) Pinched multilamellar structure of aggregates of lysozyme and phosphatidylserine-containing membranes revealed by FRET. Biophys J 95:4726–4736

    Article  CAS  PubMed  Google Scholar 

  • Davenport L (1997) Fluorescence probes for studying membrane heterogeneity. Meth Enzymol 278:487–512

    Article  CAS  PubMed  Google Scholar 

  • Davenport L, Dale RE, Bisby RH, Cundall RB (1985) Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance energy transfer. Biochemistry 24:4097–4108

    Article  CAS  PubMed  Google Scholar 

  • de Almeida RFM, Loura LMS, Fedorov A, Prieto M (2002) Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer. Biophys J 82:823–834

    Article  PubMed  Google Scholar 

  • de Almeida RFM, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85:2406–2416

    Article  PubMed  Google Scholar 

  • de Almeida RFM, Loura LMS, Prieto M, Watts A, Fedorov A, Barrantes FJ (2004) Cholesterol modulates the organization of the γM4 transmembrane domain of the muscle nicotinic acetylcholine receptor. Biophys J 86:2261–2272

    Article  PubMed  Google Scholar 

  • de Almeida RFM, Loura LMS, Fedorov A, Prieto M (2005) Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. J Mol Biol 346:1109–1120

    Article  PubMed  Google Scholar 

  • de Almeida RFM, Borst J, Fedorov A, Prieto M, Visser AJWG (2007) Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence. Biophys J 93:539–553

    Article  PubMed  Google Scholar 

  • Demidov AA (1999) Use of a Monte Carlo method in the problem of energy migration in molecular complexes. In: Andrews DL, Demidov AA (eds) Resonance energy transfer. Wiley, New York., pp 435–465

    Google Scholar 

  • Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  PubMed  Google Scholar 

  • Fernandes F, Loura LMS, Prieto M, Koehorst R, Spruijt R, Hemminga MA (2003) Dependence of M13 major coat protein oligomerization and lateral segregation on bilayer composition. Biophys J 85:2430–2441

    Article  CAS  PubMed  Google Scholar 

  • Fernandes F, Loura LMS, Fedorov A, Prieto M (2006) Absence of clustering of phosphatidylinositol-(4,5)-bisphosphate in fluid phosphatidylcholine. J Lipid Res 47:1521–1525

    Article  CAS  PubMed  Google Scholar 

  • Fernandes F, Loura LMS, Chichón FJ, Carrascosa JL, Fedorov A, Prieto M (2008) Role of helix 0 of the N-BAR domain in membrane curvature generation. Biophys J 94:3065–3073

    Article  CAS  PubMed  Google Scholar 

  • Förster T (1949) Experimentelle und theoretische Untersuchung des Zwischenmolekularen übergangs von Elektrinenanregungsenergie. Z Naturforsch 4a:321–327

    Google Scholar 

  • Franquelim HG, Loura LM, Santos NC, Castanho MA (2008) Sifuvirtide screens rigid membrane surfaces. Establishment of a correlation between efficacy and membrane domain selectivity among HIV fusion inhibitor peptides. J Am Chem Soc 130:6215–6223

    Article  CAS  PubMed  Google Scholar 

  • Frazier ML, Wright JR, Pokorny A, Almeida PF (2007) Investigation of domain formation in sphingomyelin/cholesterol/POPC mixtures by fluorescence resonance energy transfer and Monte Carlo simulations. Biophys J 92:2422–2433

    Article  CAS  PubMed  Google Scholar 

  • Frederix P, de Beer EL, Hamelink W, Gerritsen HC (2002) Dynamic Monte Carlo simulations to model FRET and photobleaching in systems with multiple donor–acceptor interactions. J. Phys Chem B 106:6793–6801

    Article  CAS  Google Scholar 

  • Fung BK, Stryer L (1978) Surface density determination in membranes by fluorescence energy transfer. Biochemistry 17:5241–5248

    Article  CAS  PubMed  Google Scholar 

  • Goñi FM, Alonso A, Bagatolli LA, Brown RE, Marsh D, Prieto M, Thewalt JL (2008) Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim Biophys Acta 1781:665–684

    PubMed  Google Scholar 

  • Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R, Chadda R, Vishwakarma R, Rao M, Mayor S (2008) Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Merino C (1981) Quantitation of the Förster energy transfer for two-dimensional systems. I. Lateral phase separation in unilamellar vesicles formed by binary phospholipid mixtures. Biophys Chem 14:247–257

    Article  CAS  PubMed  Google Scholar 

  • Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    Article  CAS  PubMed  Google Scholar 

  • Holt A, de Almeida RFM, Nyholm TK, Loura LMS, Daily AE, Staffhorst RW, Rijkers DT, Koeppe RE 2nd, Prieto M, Killian JA (2008) Is there a preferential interaction between cholesterol and tryptophan residues in membrane proteins? Biochemistry 47:2638–2649

    Article  CAS  PubMed  Google Scholar 

  • Ipsen JH, Karlström G, Mouritsen OG, Wennerström H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine–cholesterol system. Biochim Biophys Acta 905:162–172

    Article  CAS  PubMed  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen K, Mouritsen OG (1995) Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys J 69:942–954

    Article  PubMed  Google Scholar 

  • Kiskowski MA, Kenworthy AK (2007) In silico characterization of resonance energy transfer for disk-shaped membrane domains. Biophys J 92:3040–3051

    Article  CAS  PubMed  Google Scholar 

  • Leidy C, Wolkers WF, Jørgensen K, Mouritsen OG, Crowe JH (2001) Lateral organization and domain formation in a two-component lipid membrane system. Biophys J 80:1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Li M, Reddy LG, Bennett R, Silva ND Jr, Jones LR, Thomas DD (1999) A fluorescence energy transfer method for analysing protein oligomeric structure: application to phospholamban. Biophys J 76:2587–2599

    Article  CAS  PubMed  Google Scholar 

  • Liu YS, Li L, Ni S, Winnik M (1993) Recovery of acceptor concentration distribution in direct energy transfer experiments. Chem Phys 177:579–589

    Article  CAS  Google Scholar 

  • London E (2005) How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim Biophys Acta 1746:203–220

    Article  CAS  PubMed  Google Scholar 

  • Loura LMS, Prieto M (2000) Resonance energy transfer in heterogeneous planar and bilayer systems: theory and simulation. J Phys Chem B 104:6911–6919

    Article  CAS  Google Scholar 

  • Loura LMS, Fedorov A, Prieto M (1996) Resonance energy transfer in a model system of membranes: application to gel and liquid crystalline phases. Biophys J 71:1823–1836

    Article  CAS  PubMed  Google Scholar 

  • Loura LMS, Fedorov A, Prieto M (2000a) Membrane probe distribution heterogeneity: a resonance energy transfer study. J Phys Chem B 104:6920–6931

    Article  CAS  Google Scholar 

  • Loura LMS, Fedorov A, Prieto M (2000b) Partition of membrane probes in a gel/fluid two-component lipid system: a fluorescence resonance energy transfer study. Biochim Biophys Acta 1467:101–112

    Article  CAS  PubMed  Google Scholar 

  • Loura LMS, Fedorov A, Prieto M (2001a) Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. Biochim Biophys Acta 1511:236–243

    Article  CAS  PubMed  Google Scholar 

  • Loura LMS, Fedorov A, Prieto M (2001b) Fluid–fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. Biophys J 80:776–788

    Article  CAS  PubMed  Google Scholar 

  • Loura LMS, Coutinho A, Silva A, Fedorov A, Prieto M (2006) Structural effects of a basic peptide on the organization of dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylserine membranes: a fluorescent resonance energy transfer study. J Phys Chem B 110:8130–8141

    Article  CAS  PubMed  Google Scholar 

  • Mateo CR, Acuna AU, Brochon J-C (1995) Liquid-crystalline phases of cholesterol lipid bilayers as revealed by the fluorescence of trans-parinaric acid. Biophys J 68:978–987

    Article  CAS  Google Scholar 

  • Mesquita MMRS, Melo E, Thompson TE, Vaz WLC (2000) Partitioning of amphiphiles between coexisting ordered and disordered phases in two-phase lipid bilayer membranes. Biophys J 78:3019–3025

    Article  CAS  PubMed  Google Scholar 

  • Morrow MR, Davis JH, Sharom FJ, Lamb MP (1986) Studies on the interaction of human erythrocyte band 3 with membrane lipids using deuterium nuclear magnetic resonance and differential scanning calorimetry. Biochim Biophys Acta 858:13–20

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen OG (2005) Life—as a matter of fat. The emerging science of lipidomics. Springer, Heidelberg

    Google Scholar 

  • Mouritsen OG, Bloom M (1984) Mattress model of lipid–protein interactions in membranes. Biophys J 46:141–153

    Article  CAS  PubMed  Google Scholar 

  • Niemelä PS, Hyvönen MT, Vattulainen I (2009) Atom-scale molecular interactions in lipid raft mixtures. Biochim Biophys Acta 1788:122–135

    Article  PubMed  Google Scholar 

  • Owen DM, Neil MA, French PM, Magee AI (2007) Optical techniques for imaging membrane lipid microdomains in living cells. Semin Cell Dev Biol 18:591–598

    Article  CAS  PubMed  Google Scholar 

  • Pandit SA, Jakobsson E, Scott HL (2004) Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys J 87:3312–3322

    Article  CAS  PubMed  Google Scholar 

  • Pedersen S, Jørgensen K, Bækmark TR, Mouritsen OG (1996) Indirect evidence for lipid–domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer. Biophys J 71:554–560

    Article  CAS  PubMed  Google Scholar 

  • Pokorny A, Yandek LE, Elegbede AI, Hinderliter A, Almeida PFF (2006) Temperature and composition dependence of the interaction of δ-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC. Biophys J 91:2184–2197

    Article  CAS  PubMed  Google Scholar 

  • Putzel GG, Schick M (2008) Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol. Biophys J 95:4756–4762

    Article  CAS  PubMed  Google Scholar 

  • Rao M, Mayor S (2005) Use of Forster’s resonance energy transfer microscopy to study lipid rafts. Biochim Biophys Acta 1746:221–233

    Article  CAS  PubMed  Google Scholar 

  • Redfern DA, Gericke A (2004) Domain formation in phosphatidylinositol monophosphate/phosphatidylcholine mixed vesicles. Biophys J 86:2980–2992

    Article  CAS  PubMed  Google Scholar 

  • Redfern DA, Gericke A (2005) pH-dependent domain formation in phosphatidylinositol polyphosphate/phosphatidylcholine mixed vesicles. J Lipid Res 46:504–515

    Article  CAS  PubMed  Google Scholar 

  • Ries J, Chiantia S, Schwille P (2009) Accurate determination of membrane dynamics with line-scan FCS. Biophys J 96:1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Santos NC, Prieto M, Castanho M (2003) Quantifying molecular partition into model systems of biomembranes. An emphasis on optical spectroscopic methods. Biochim Biophys Acta 1612:123–135

    Article  CAS  PubMed  Google Scholar 

  • Scolari S, Engel S, Krebs N, Plazzo AP, De Almeida RF, Prieto M, Veit M, Herrmann A (2009) Lateral distribution of the transmembrane domain of influenza virus hemagglutinin revealed by time-resolved fluorescence imaging. J Biol Chem 284:15708–15716

    Article  CAS  PubMed  Google Scholar 

  • Sergé A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:671–672

    Article  Google Scholar 

  • Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  CAS  PubMed  Google Scholar 

  • Shimshick EJ, McConnel HM (1973) Lateral phase separation in phospholipid membranes. Biochemistry 12:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Silva LC, de Almeida RFM, Castro BM, Fedorov A, Prieto M (2007) Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys J 92:502–516

    Article  CAS  PubMed  Google Scholar 

  • Silvius JR (2003) Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane. Biophys J 85:1034–1045

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Smaby JM, Momsen MM, Brockman HL, Brown RE (1997) Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys J 73:1492–1505

    Article  CAS  PubMed  Google Scholar 

  • Snyder B, Freire E (1982) Fluorescence energy transfer in two dimensions. A numeric solution for random and non-random distributions. Biophys J 40:137–148

    Article  CAS  PubMed  Google Scholar 

  • Stilwell W, Jenski LJ, Zerouga M, Dumaual AC (2000) Detection of lipid domains in docosahexaenoic acid-rich bilayers by acyl chain-specific FRET probes. Chem Phys Lipids 104:113–132

    Article  Google Scholar 

  • Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726

    Article  CAS  PubMed  Google Scholar 

  • Takanishi CL, Bykova EA, Cheng W, Zheng J (2006) GFP-based FRET analysis in live cells. Brain Res 1091:132–139

    Article  CAS  PubMed  Google Scholar 

  • Towles KB, Dan N (2007) Determination of membrane domain size by fluorescence resonance energy transfer: effects of domain polydispersity and packing. Langmuir 23:4737–4739

    Article  CAS  PubMed  Google Scholar 

  • Towles KB, Brown AC, Wrenn SP, Dan N (2007) Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer. Biophys J 93:655–667

    Article  CAS  PubMed  Google Scholar 

  • Van Der Meer B, Coker V III, Chen S-YS (1994) Resonance energy transfer: theory and data. VCH Publishers, New York

    Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  CAS  PubMed  Google Scholar 

  • Veatch SL, Keller SL (2002) Organization in lipid membranes containing cholesterol. Phys Rev Lett 89:268101

    Article  PubMed  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

    Article  CAS  PubMed  Google Scholar 

  • Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185

    Article  CAS  PubMed  Google Scholar 

  • Veatch SL, Polozov IV, Gawrisch K, Keller SL (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J 86:2910–2922

    Article  CAS  PubMed  Google Scholar 

  • Veatch SL, Keller SL, Gawrisch K (2007) Critical fluctuations in domain-forming lipid mixtures. Proc Natl Acad Sci USA 104:17650–17655

    Article  CAS  PubMed  Google Scholar 

  • Veiga AS, Santos NC, Loura LMS, Fedorov A, Castanho MA (2004) HIV fusion inhibitor peptide T-1249 is able to insert or adsorb to lipidic bilayers. Putative correlation with improved efficiency. J Am Chem Soc 126:14758–14763

    Article  CAS  PubMed  Google Scholar 

  • Wolber PK, Hudson BS (1979) An analytical solution to the Förster energy transfer problem in two dimensions. Biophys J 28:197–210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Fundação para a Ciência e Tecnologia (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís M. S. Loura.

Additional information

The more you see: spectroscopy in molecular biophysics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loura, L.M.S., Fernandes, F. & Prieto, M. Membrane microheterogeneity: Förster resonance energy transfer characterization of lateral membrane domains. Eur Biophys J 39, 589–607 (2010). https://doi.org/10.1007/s00249-009-0547-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0547-5

Keywords

Navigation