Skip to main content

Advertisement

Log in

Intracellular calcium oscillations in strongly metastatic human breast and prostate cancer cells: control by voltage-gated sodium channel activity

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The possible association of intracellular Ca2+ with metastasis in human cancer cells is poorly understood. We have studied Ca2+ signaling in human prostate and breast cancer cell lines of strongly versus weakly metastatic potential in a comparative approach. Intracellular free Ca2+ was measured using a membrane-permeant fluorescent Ca2+-indicator dye (Fluo-4 AM) and confocal microscopy. Spontaneous Ca2+ oscillations were observed in a proportion of strongly metastatic human prostate and breast cancer cells (PC-3M and MDA-MB-231, respectively). In contrast, no such oscillations were observed in weakly/non metastatic LNCaP and MCF-7 cells, although a rise in the resting Ca2+ level could be induced by applying a high-K+ solution. Various parameters of the oscillations depended on extracellular Ca2+ and voltage-gated Na+ channel activity. Treatment with either tetrodotoxin (a general blocker of voltage-gated Na+ channels) or ranolazine (a blocker of the persistent component of the channel current) suppressed the Ca2+ oscillations. It is concluded that the functional voltage-gated Na+ channel expression in strongly metastatic cancer cells makes a significant contribution to generation of oscillatory intracellular Ca2+ activity. Possible mechanisms and consequences of the Ca2+ oscillations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulkareem ZA, Gee JMW, Cox CD, Wann KT (2016) Knockdown of the small conductance Ca2+-activated K+ channels is potently cytotoxic in breast cancer cell lines. Br J Pharmacol 173:177–190. doi:10.1111/bph.13357

    Article  CAS  PubMed  Google Scholar 

  • Apuschkin M, Ougaard M, Rekling JC (2013) Spontaneous calcium waves in granule cells in cerebellar slice cultures. Neurosci Lett 553:78–83. doi:10.1016/j.neulet.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  • Asuthkar S, Velpula KK, Elustondo PA, Demirkhanyan L, Zakharian E (2015) TRPM8 channel as a novel molecular target in androgen-regulated prostate cancer cells. Oncotarget 6:17221–17236. doi:10.18632/oncotarget.3948

    Article  PubMed  PubMed Central  Google Scholar 

  • Aydar E, Yeo S, Djamgoz MBA, Palmer C (2009) Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: a potential target for breast cancer diagnosis and therapy. Cancer Cell Int 9:23. doi:10.1186/1475-2867-9-23

    Article  PubMed  PubMed Central  Google Scholar 

  • Basso D, Greco E, Padoan A, Fogar P, Scorzeto M, Fadi E, Bozzato D, Moz S, Navaglia F, Zambon CF, Seraglia R, De Carlo E, Valerio A, Reggiani C, Pedrazzoli S, Plebani M (2011) Altered intracellular calcium fluxes in pancreatic cancer induced diabetes mellitus: relevance of the S100A8N-terminal peptide (NT-S100A8). J Cell Physiol 226:456–468. doi:10.1002/jcp.22355

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  • Blaustein MP, Santiago EM (1977) Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J 20:79–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell TM, Main MJ, Fitzgerald EM (2013) Functional expression of the voltage-gated Na+-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells. J Cell Sci 126:4939–4949. doi:10.1242/jcs.130013

    Article  CAS  PubMed  Google Scholar 

  • Clarysse L, Guéguinou M, Potier-Cartereau M, Vandecasteele G, Bougnoux P, Chevalier S, Chantôme A, Vandier C (2014) cAMP-PKA inhibition of SK3 channel reduced both Ca2+ entry and cancer cell migration by regulation of SK3-Orai1 complex. Pflugers Archiv 466:1921–1932. doi:10.1007/s00424-013-1435-5

    Article  CAS  PubMed  Google Scholar 

  • Cone CD (1975) The role of surface electrical transmembrane potential in normal and malignant mitogenesis. Ann NY Acad Sci 238:420–435

    Article  Google Scholar 

  • Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362

    Article  CAS  PubMed  Google Scholar 

  • Cross BM, Breitwieser GE, Reinhardt TA, Rao R (2014) Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology. Am J Physiol Cell Physiol 306(6):C515–C526. doi:10.1152/ajpcell.00330.2013

    Article  CAS  PubMed  Google Scholar 

  • De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230

    Article  PubMed  Google Scholar 

  • Derouiche S, Warnier M, Mariot P, Gosset P, Mauroy B, Bonnal J-L, Slomianny C, Delcourt P, Prevarskaya N, Roudbaraki M (2013) Bisphenol A stimulates human prostate cancer cell migration via remodelling of calcium signalling. SpringerPlus 2:54. doi:10.1186/2193-1801-2-54

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhennin-Duthille I, Gautier M, Faouzi M et al (2011) High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem 28:813–822. doi:10.1159/000335795

    Article  CAS  PubMed  Google Scholar 

  • Diaz D, Delgadillo DM, Hernández-Gallegos E, Ramírez-Domínguez ME, Hinojosa LM, Ortiz CS, Berumen J, Camacho J, Gomora JC (2007) Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol 210:469–478

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Robbins J, Fraser SP, Grimes JA, Djamgoz MBA (2006) Comparative studies of intracellular Ca2+ in strongly and weakly metastatic rat prostate cancer cell lines. Int J Biochem Cell Biol 38:366–375

    Article  CAS  PubMed  Google Scholar 

  • Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y (2010) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 102:1052–1068. doi:10.1093/jnci/djq217

    Article  CAS  PubMed  Google Scholar 

  • Diss JKJ, Archer SN, Hirano J, Fraser SP, Djamgoz MBA (2001) Expression profiles of voltage-gated Na+ channel α-subunit genes in rat and human prostate cancer cell lines. Prostate 48:1–14. doi:10.1002/pros.1095

    Article  Google Scholar 

  • Diss JKJ, Fraser SP, Djamgoz MBA (2004) Voltage-gated Na+ channels: functional consequences of multiple subtypes and isoforms for physiology and pathophysiology. Eur Biophys J 33:180–193

    Article  CAS  PubMed  Google Scholar 

  • Djamgoz MBA, Onkal R (2013) Persistent current blockers of voltage-gated sodium channels: a clinical opportunity for controlling metastatic disease. Recent Pat Anticancer Drug Discov 8:66–84

    Article  CAS  PubMed  Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  CAS  PubMed  Google Scholar 

  • Dravid SM, Baden DG, Murray TF (2004) Brevetoxin activation of voltage-gated sodium channels regulates Ca dynamics and ERK1/2 phosphorylation in murine neocortical neurons. J Neurochem 89:739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driffort V, Gillet L, Bon E, Marionneau-Lambot S, Oullier T, Joulin V, Collin C, Pagès JC, Jourdan ML, Chevalier S, Bougnoux P, Le Guennec JY, Besson P, Roger S (2014) Ranolazine inhibits Nav1.5-mediated breast cancer cell invasiveness and lung colonization. Mol Cancer 13:264. doi:10.1186/1476-4598-13-264

    Article  PubMed  PubMed Central  Google Scholar 

  • Fekete A, Franklin L, Ikemoto T, Rózsa B, Lendvai B, Sylvester Vizi E, Zelles T (2009) Mechanism of the persistent sodium current activator veratridine evoked Ca elevation: implication for epilepsy. J Neurochem 111:745–756. doi:10.1111/j.1471-4159.2009.06368.x

    Article  CAS  PubMed  Google Scholar 

  • Fraser SP, Diss JKJ, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyutürk M, Kaya H, Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS, Coombes RC, Djamgoz MBA (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11:5381–5389

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Shen Y, Cai J, Lei M, Wang Z (2010) Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer. Oncol Rep 23:1293–1299

    CAS  PubMed  Google Scholar 

  • Grimes JA, Fraser SP, Stephens GJ, Downing JEG, Laniado ME, Foster CS, Abel PD, Djamgoz MBA (1995) Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Letts 369:290–294

    Article  CAS  Google Scholar 

  • Gutierrez AA, Arias JM, García L, Mas-Oliva J, Guerrero-Hernández A (1999) Activation of a Ca2+-permeable cation channel by two different inducers of apoptosis in a human prostatic cancer cell line. J Physiol 517:95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara N, Irisawa H, Kasanuki H, Hosoda S (1992) Background current in sino-atrial node cells of the rabbit heart. J Physiol 448:53–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey RD, Ten Eick RE (1989) On the role of sodium ions in the regulation of the inward-rectifying potassium conductance in cat ventricular myocytes. J Gen Physiol 94:329–348

    Article  CAS  PubMed  Google Scholar 

  • House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, Sarvazyan N, Irby R, Strausberg RL, Hales TG, Stuart JM, Lee NH (2010) Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res 70:6957–6967. doi:10.1158/0008-5472.CAN-10-1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulikova A, Aveyard N, Harris AL, Vaughan-Jones RD, Swietach P (2014) Intracellular carbonic anhydrase activity sensitizes cancer cell pH signaling to dynamic changes in CO2 partial pressure. J Biol Chem 289:25418–25430. doi:10.1074/jbc.M114.547844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SG, Choi JY (2013) 4-hexylresorcinol exerts antitumor effects via suppression of calcium oscillation and its antitumor effects are inhibited by calcium channel blockers. Oncol Rep 29:1835–1840. doi:10.3892/or.2013.2292

    CAS  PubMed  Google Scholar 

  • Komuro H, Rakic P (1996) Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17(2):275–285

    Article  CAS  PubMed  Google Scholar 

  • Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackière F, Bidaux G, Urbain R, Gosset P, Delcourt P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N (2009) Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28:1792–1806. doi:10.1038/onc.2009.25

    Article  CAS  PubMed  Google Scholar 

  • Laniado ME, Lalani EN, Fraser SP, Grimes JA, Bhangal G, Djamgoz MBA, Abel PD (1997) Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 150:1213–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laniado ME, Fraser SP, Djamgoz MBA (2001) Voltage-gated K+ channel activity in human prostate cancer cell lines of markedly different metastatic potential: distinguishing characteristics of PC-3 and LNCaP cells. Prostate 46:262–274

    Article  CAS  PubMed  Google Scholar 

  • Le Guennec JY, Ouadid-Ahidouch H, Soriani O, Besson P, Ahidouch A, Vandier C (2007) Voltage-gated ion channels, new targets in anti-cancer research. Recent Pat Anticancer Drug Discov 2:189–202

    Article  PubMed  Google Scholar 

  • Lehen’kyi V, Flourakis M, Skryma R, Prevarskaya N (2007) TRPV6 channel controls prostate cancer cell proliferation via Ca2+/NFAT-dependent pathways. Oncogene 26:7380–7385

    Article  PubMed  Google Scholar 

  • Lioudyno MI, Kozak JA, Penna A, Safrina O, Zhang SL, Sen D, Roos J, Stauderman KA, Cahalan MD (2008) Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci USA 105:2011–2016. doi:10.1073/pnas.0706122105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson M, Yang M, Millican-Slater R, Brackenbury WJ (2015) Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 6:32914–32929. doi:10.18632/oncotarget.5441

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouwerkerk R, Jacobs MA, Macura KJ, Wolff AC, Stearns V, Mezban SD, Khouri NF, Bluemke DA, Bottomley PA (2007) Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI. Breast Cancer Res Treat 106:151–160

    Article  CAS  PubMed  Google Scholar 

  • Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh CC (2003) Effects of intermediate-conductance Ca2+ activated K+-channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471:157–164. doi:10.1016/S0014-2999(03)01825-9

    Article  CAS  PubMed  Google Scholar 

  • Parkash J, Asotra K (2010) Calcium wave signaling in cancer cells. Life Sci 87:587–595. doi:10.1016/j.lfs.2010.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prevarskaya N, Ouadid-Ahidouch H, Skryma R, Shuba Y (2014) Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Phil Trans R Soc B 369:20130097. doi:10.1098/rstb.2013.0097

    Article  PubMed  PubMed Central  Google Scholar 

  • Roger S, Besson P, Le Guennec JY (2003) Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 1616:107–111

    Article  CAS  PubMed  Google Scholar 

  • Roger S, Potier M, Vandier C, Besson P, Le Guennec JY (2006) Voltage-gated sodium channels: new targets in cancer therapy? Curr Pharm Des 12:3681–3695

    Article  CAS  PubMed  Google Scholar 

  • Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, Lei M, Bougnoux P, Gruel Y, Le Guennec JY (2007) Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol 39:774–786. doi:10.1016/j.biocel.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  • Saidak Z, Boudot C, Abdoune R, Petit L, Brazier M, Mentaverri R, Kamel S (2009) Extracellular calcium promotes the migration of breast cancer cells through the activation of the calcium sensing receptor. Exp Cell Res 315:2072–2080. doi:10.1016/j.yexcr.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  • Saint DA, Ju YK, Gage PW (1992) A persistent sodium current in rat ventricular myocytes. J Physiol 453:219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA (2015) Functional and physiopathological implications of TRP channels. Biochim Biophys Acta 1853:1772–1782. doi:10.1016/j.bbamcr.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  • Smedler E, Uhlén P (2014) Frequency decoding of calcium oscillations. Biochim Biophys Acta 1840:964–969. doi:10.1016/j.bbagen.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  • Snowdowne KW, Borle AB (1985) Effects of low extracellular sodium on cytosolic ionized calcium. Na+–Ca2+ exchange as a major calcium influx pathway in kidney cells. J Biol Chem 260:14998–15007

    CAS  PubMed  Google Scholar 

  • Song Y, Shryock JC, Wagner S, Maier LS, Belardinelli L (2006) Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exper Therapeut 318:214–222. doi:10.1124/jpet.106.101832

    Article  CAS  Google Scholar 

  • Stewart TA, Yapa KT, Monteith GR (2015) Altered calcium signaling in cancer cells. Biochim Biophy Acta 1848:2502–2511. doi:10.1016/j.bbamem.2014.08.016

    Article  CAS  Google Scholar 

  • Sun J, Lu F, He H, Shen J, Messina J, Mathew R, Wang D, Sarnaik AA, Chang WC, Kim M, Cheng H, Yang S (2014) STIM1- and Orail-mediated Ca2+ oscillation orchestrates invadopodium formation and melanoma invasion. J Cell Biol 207:535–548. doi:10.1083/jcb.201407082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Guo YS, Yu XL, Huang W, Zheng M, Zhou YH, Nan G, Wang JC, Yang HJ, Yu JM, Jiang JL, Chen ZN (2015) CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma. Oncotarget 6:34831–34845. doi:10.18632/oncotarget.5225

    PubMed  PubMed Central  Google Scholar 

  • Tsai F-C, Kuo G-H, Chang S-W, Tsai P-J (2015) Ca2+ signaling in cytoskeletal reorganization, cell migration, and cancer metastasis. BioMed Res Int 2015:409245. doi:10.1155/2015/409245

    PubMed  PubMed Central  Google Scholar 

  • Williams BA, Sims SM (2007) Calcium sparks activate calcium-dependent Cl current in rat corpus cavernosum smooth muscle cells. Am J Physiol Cell Physiol 293:C1239–C1251

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Wang XH, Wang HP, Hu LQ (2009) Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells. Asian J Androl 11:157–165. doi:10.1038/aja.2009.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim S, Altun S, Gumushan H, Patel A, Djamgoz MBA (2012) Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett 323:58–61. doi:10.1016/j.canlet.2012.03.036

    Article  CAS  PubMed  Google Scholar 

  • Zheng J (2013) Molecular mechanism of TRP channels. Compr Physiol 3:221–242. doi:10.1002/cphy.c120001

    PubMed  PubMed Central  Google Scholar 

  • Zhu H, Zhang H, Jin F, Fang M, Huang M, Yang CS, Chen T, Fu L, Pan Z (2014) Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma. Oncotarget 5:3455–3471

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge continued financial support from the Pro Cancer Research Fund (PCRF) in the form of a rolling grant (MBAD, SPF). RO was supported by the British Heart Foundation (BHF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahit Rizaner.

Ethics declarations

Conflict of interest

MBAD has a patent pending for use of blockers of the persistent component of the voltage-gated sodium channel as anti-cancer agents.

Additional information

Special Issue: Ion Channels, Transporters and Cancer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizaner, N., Onkal, R., Fraser, S.P. et al. Intracellular calcium oscillations in strongly metastatic human breast and prostate cancer cells: control by voltage-gated sodium channel activity. Eur Biophys J 45, 735–748 (2016). https://doi.org/10.1007/s00249-016-1170-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1170-x

Keywords

Navigation