Skip to main content

Advertisement

Log in

Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas sp. strain PP2 isolated in our laboratory efficiently metabolizes phenanthrene at 0.3% concentration as the sole source of carbon and energy. The metabolic pathways for the degradation of phenanthrene, benzoate and p-hydroxybenzoate were elucidated by identifying metabolites, biotransformation studies, oxygen uptake by whole cells on probable metabolic intermediates, and monitoring enzyme activities in cell-free extracts. The results obtained suggest that phenanthrene degradation is initiated by double hydroxylation resulting in the formation of 3,4-dihydroxyphenanthrene. The diol was finally oxidized to 2-hydroxymuconic semialdehyde. Detection of 1-hydroxy-2-naphthoic acid, α-naphthol, 1,2-dihydroxy naphthalene, and salicylate in the spent medium by thin layer chromatography; the presence of 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-2,3-dioxygenase activity in the extract; O2 uptake by cells on α-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate and catechol; and no O2 uptake on o-phthalate and 3,4-dihydroxybenzoate supports the novel route of metabolism of phenanthrene via 1-hydroxy-2-naphthoic acid → [α-naphthol] → 1,2-dihydroxy naphthalene → salicylate → catechol. The strain degrades benzoate via catechol and cis,cis-muconic acid, and p-hydroxybenzoate via 3,4-dihydroxybenzoate and 3-carboxy-cis,cis-muconic acid. Interestingly, the culture failed to grow on naphthalene. When grown on either hydrocarbon or dextrose, the culture showed good extracellular biosurfactant production. Growth-dependent changes in the cell surface hydrophobicity, and emulsification activity experiments suggest that: (1) production of biosurfactant was constitutive and growth-associated, (2) production was higher when cells were grown on phenanthrene as compared to dextrose and benzoate, (3) hydrocarbon-grown cells were more hydrophobic and showed higher affinity towards both aromatic and aliphatic hydrocarbons compared to dextrose-grown cells, and (4) mid-log-phase cells were significantly (2-fold) more hydrophobic than stationary phase cells. Based on these results, we hypothesize that growth-associated extracellular biosurfactant production and modulation of cell surface hydrophobicity plays an important role in hydrocarbon assimilation/uptake in Pseudomonas sp. strain PP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Adachi K, Iwabuchi T, Sano H, Harayama S (1999) Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J Bacteriol 181:757–763

    CAS  PubMed  Google Scholar 

  • Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    PubMed  Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702

    CAS  PubMed  Google Scholar 

  • Barnsley EA (1983) Phthalate pathway of phenanthrene metabolism: formation of 2′-carboxybenzalpyruvate. J Bacteriol 154:113–117

    CAS  PubMed  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    Article  CAS  PubMed  Google Scholar 

  • Bouchez-Naitali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428

    PubMed  Google Scholar 

  • Buchanan RE, Gibbons NE (eds) (1974) Bergey's manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore

  • Dean SM, Jin Y, Cha DK, Wilson SV, Radosevich M (2001) Phenanthrene degradation in soils inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. J Environ Qual 30:1126–1133

    CAS  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  Google Scholar 

  • Doddamani HP, Ninnekar HZ (2000) Biodegradation of phenanthrene by a Bacillus species. Curr Microbiol 41:11–14

    PubMed  Google Scholar 

  • Georgiou G, Lin SC, Sharma M (1992) Surface-active compounds from microorganisms. Biotechnology 10:60–65

    CAS  PubMed  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Dekker, New York, pp 182–252

  • Goswami P, Singh HD (1991) Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol Bioeng 37:1–11

    CAS  Google Scholar 

  • Gu MB, Chang ST (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens Bioelectron 16:667–674

    CAS  PubMed  Google Scholar 

  • Haferberg D, Hommel R, Claus R, Kleber HP (1986) Extracellular microbial lipids as surfactants. Adv Biochem Eng Biotechnol 33:53–93

    CAS  Google Scholar 

  • Harpel MR, Lipscomb JD (1990) Gentisate 1,2-dioxygenase from Pseudomonas purification, characterisation, and comparision of the enzyme from Pseudomonas testosteroni and Pseudomonas acidovorans. J Biol Chem 265:6301–6311

    CAS  PubMed  Google Scholar 

  • Hayaishi O, Katagiri M, Rothberg S (1957) Studies on oxygenases: pyrocatechase. J Biol Chem 229:905–920

    CAS  Google Scholar 

  • Iwabuchi T, Harayama S (1997) Biochemical and genetic characterization of 2′-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol 179:6488–6494

    CAS  PubMed  Google Scholar 

  • Iwabuchi T, Harayama S (1998) Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J Biol Chem 273:8332–8336

    Article  CAS  PubMed  Google Scholar 

  • Kanaly RA, Haryama S (2000) Biodegradation of high molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    PubMed  Google Scholar 

  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176:2439–2443

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Takami H, Hirayama H, Kobata K, Usami R, Horikoshi K (1999) Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH. J Bacteriol 181:4493–4498

    CAS  PubMed  Google Scholar 

  • Kojima Y, Itada N, Hayaishi O (1961) Metapyrocatechase: a new catechol-cleaving enzyme. J Biol Chem 236:2223–2228

    CAS  Google Scholar 

  • Kuhm AE, Stolz A, Nagi KL, Knackmuss HJ (1991) Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acid. J Bacteriol 173:3795–3802

    CAS  PubMed  Google Scholar 

  • Langworthy DE, Stapleton RD, Sayler GS, Findlay RH (2002) Lipid analysis of the response of a sedimentary microbial community to polycyclic aromatic hydrocarbons. Microb Ecol 43:189–198

    CAS  PubMed  Google Scholar 

  • Loosdrecht MC van, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897

    PubMed  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Maagd RA de, Rao AS, Mulders IH, Goosen-De RI, van Loosdrecht MC, Wijffelman CA (1989) Isolation and characterization of mutants of Rhizobium leguminosarum bv. Viviae 248 with altered lipopolysaccharides: possible role of surface charge or hydrophobicity in bacterial release from the infection thread. J Bacteriol 171:1143–1150

    PubMed  Google Scholar 

  • Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307

    CAS  PubMed  Google Scholar 

  • Minagi S, Miyake Y, Fujioka Y, Tsuru H, Suginaka H (1986) Cell-surface hydrophobicity of Candida species as determined by the contact-angle and hydrocarbon-adherence methods. J Gen Microbiol 132:1111–1115

    CAS  PubMed  Google Scholar 

  • Moran AC, Olivera N, Commendatore M, Esteves JL, Sineriz F (2000) Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 11:65–71

    CAS  PubMed  Google Scholar 

  • Mukherjee RM, Bhol KC, Mehra S, Maitra TK, Jalan KN (1992) High cell surface hydrophobicity of virulent Entamoeba histolytica isolates. Trans R Soc Trop Med Hyg 86:396–398

    CAS  PubMed  Google Scholar 

  • Noordman WH, Wachter JH, de Boer GJ, Janssen DB (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol 94:195–212

    Article  CAS  PubMed  Google Scholar 

  • Panagoda GJ, Ellepola AN, Samaranayake LP (2001) Adhesion of Candida parapsilosis to epithelial and acrylic surfaces correlates with cell surface hydrophobicity. Mycoses 44:29–35

    CAS  PubMed  Google Scholar 

  • Patel TR, Barnsley EA (1980) Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene dioxygenase. J Bacteriol 143:668–673

    CAS  PubMed  Google Scholar 

  • Persson A, Osterberg E, Dostalek M (1988) Biosurfactant production by Pseudomonas fluorescens 378: growth and product characterization. Appl Microbiol Biotechnol 29:1–4

    CAS  Google Scholar 

  • Phale PS (1994) Biodegradation of 1-naphthoic acid by a soil isolate Pseudomonas maltophilia CSV89. Ph D thesis, Indian Institute of Science, Bangalore, India

  • Phale PS, Savithri HS, Rao NA, Vaidyanathan CS (1995a) Production of biosurfactant "Biosur-Pm" by Pseudomonas maltophilia CSV89: characterization and role in hydrocarbon uptake. Arch Microbiol 163:424–431

    Article  CAS  Google Scholar 

  • Phale PS, Mahajan MC, Vaidyanathan CS (1995b) A pathway for degradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89. Arch Microbiol 163:42–47

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E (1986) Microbial surfactants. CRC Crit Rev Biotechnol 3:109–132

    CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    CAS  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 38:1331–1337

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (2000) A novel phenanthrene dioxygenase from Nocarioides sp. strain KP7: expression in Escherichia coli. J Bacteriol 182:2134–2141

    CAS  PubMed  Google Scholar 

  • Samanta SK, Chakraborti AK, Jain RK (1999) Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107

    Google Scholar 

  • Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl Environ Microbiol 66:4585–4588

    Article  CAS  PubMed  Google Scholar 

  • Schippers C, Gessner K, Muller T, Scheper T (2000) Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 83:189–198

    Article  CAS  PubMed  Google Scholar 

  • Shreve GS, Inguva S, Gunnam S (1995) Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol Mar Biol Biotechnol 4:331–337

    CAS  PubMed  Google Scholar 

  • Singleton DR, Masuoka J, Hazen KC (2001) Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol 183:3582–3588

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Ingraham JL (1954) Protocatechuic acid oxidase. J Biol Chem 210:799–808

    CAS  Google Scholar 

  • Stenström TA (1989) Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl Environ Microbiol 55:142–147

    PubMed  Google Scholar 

  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176:2444–2449

    CAS  PubMed  Google Scholar 

  • Tsoi TV, Kosheleva IA, Zamaraev VS, Trelina OV, Selifonov SA (1988) Cloning and expression of Pseudomonas putida gene controlling the catechol-2,3-dioxygenase activity in Escherichia coli cells. Genetika 24:1550–1561

    CAS  PubMed  Google Scholar 

  • Wibawan IW, Lammler C (1992) Relationship between group B streptococcal serotypes and cell surface hydrophobicity. Zentralbl Veterinaermed Reihe B 39:376–382

    CAS  Google Scholar 

  • Yang Y, Chen RF, Shiaris MP (1994) Metabolism of naphthalene, fluorene and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCBI 9816. J Bacteriol 176:2158–2164

    CAS  PubMed  Google Scholar 

  • Zajic JE, Seffens W (1984) Biosurfactants. CRC Crit Rev Biotechnol 1:87–107

    CAS  Google Scholar 

  • Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Phale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhu, Y., Phale, P.S. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61, 342–351 (2003). https://doi.org/10.1007/s00253-002-1218-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-002-1218-y

Keywords

Navigation