Skip to main content
Log in

Bioleaching review part B:

Progress in bioleaching: applications of microbial processes by the minerals industries

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This review describes the historical development and current state of metals leaching and sulfide mineral biooxidation by the minerals industries. During the past 20 years commercial processes employing microorganisms for mineral recovery have progressed from rather uncontrolled copper dump leaching to mineral oxidation and leaching in designed bioheaps for oxidation of refractory gold ores and for copper recovery. Also during this period of time, stirred tank bioleaching has been commercialized for cobalt recovery and for biooxidation of refractory gold ores. Chalcopyrite bioleaching in stirred tanks is on the verge of commercialization. Commercial applications of biohydrometallurgy have advanced due to favorable process economics and, in some cases, reduced environmental problems compared to conventional metal recovery processes such as smelting. Process development has included recognition of the importance of aeration of bioheaps, and improvements in stirred tank reactor design and operation. Concurrently, knowledge of the key microorganisms involved in these processes has advanced, aided by advances in molecular biology to characterize microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aswegen PC van, Godfrey MW, Miller DM, Haines AK (1991) Developments and innovations in bacterial oxidation of refractory ores. Miner Metall Process November:188–191

    Google Scholar 

  • Baldi F, Clark T, Pollack SS, Olson GJ (1992) Leaching of pyrites of various reactivities by Thiobacillus ferrooxidans. Appl Environ Microbiol 58:1853–1856

    Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    CAS  PubMed  Google Scholar 

  • Brierley CL (1977) Thermophilic microorganisms in extraction of metals from ores. Dev Ind Microbiol 19:273–284

    Google Scholar 

  • Brierley CL, Brierley JA (2000) Bioheap processes: operational requirements and techniques. In: Proceedings, Randol Copper Hydromet Roundtable 2000, Randol International Limited, Golden, Colo., pp 95–103

  • Brierley CL, Briggs AP (2002) Selection and sizing of biooxidation equipment and circuits. In: Mular AL, Halbe DN, Barret DJ (eds) Mineral processing plant design, practice and control. Society of Mining Engineers, Littleton, Colo., pp 1540–1568

  • Brierley CL, Murr LE (1973) Leaching: use of a thermophilic chemoautotrophic microbe. Science 179:488–489

    Google Scholar 

  • Brierley JA (1978) Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 36:523–525

    Google Scholar 

  • Brierley JA (1994) Biooxidation process for recovery of metal values from sulphur-containing ore materials. US Patent 5,332,559

  • Brierley JA (1997a) Microbial populations in mineral biooxidation processes. In: International biohydrometallurgy symposium IBS97, BIOMINE97, Australian Mineral Foundation, Glenside, South Australia, pp PSC1.1–PSC1.10

  • Brierley JA (1997b) Heap leaching of gold bearing deposits, theory and operational description. In: Rawlings D (ed) Biomining: theory, microbes and industrial processes. Springer, New York Berlin Heidelberg, pp 103–115

  • Brierley JA (2000) Expanding role of microbiology in metallurgical processes. Min Eng 52:49–53

    Google Scholar 

  • Brierley JA (2001) Response of microbial systems to thermal stress in biooxidation-heap pretreatment of refractory gold ores. In: Ciminelli VST, Garcia O (eds) Biohydrometallurgy: fundamentals technology and sustainable development, part A. Elsevier, Amsterdam, pp 23–31

  • Brierley JA, Brierley CL (1978) Microbial leaching of copper at ambient and elevated temperatures. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena, Academic Press, New York, pp 477–490

  • Brierley JA, Brierley CL (1999) Present and future commercial applications of biohydrometallurgy. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, IBS99. Elsevier, Amsterdam, pp 81–89

  • Brierley JA, Norris PR, Kelly DP, LeRoux NW (1978) Characteristics of a moderately thermophilic and acidophilic iron-oxidizing Thiobacillus. Eur J Appl Microbiol 5:291–299

    CAS  Google Scholar 

  • Bryner LC, Beck JV, David DB, Wilson DG (1954) Microorganisms in leaching sulfide minerals. Ind Eng Chem 46:2587–2592

    CAS  Google Scholar 

  • Bustos S, Castro S, Montealegre S (1993) The Sociedad Mineral Pudahuel bacterial thin-layer leaching process at Lo Aguirre. FEMS Microbol Revs 11:231–236

    Article  CAS  Google Scholar 

  • Colmer AR, Hinkle ME (1947) The role of microorganisms in acid mine drainage: a preliminary report. Science 106:253–256

    CAS  Google Scholar 

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40°C. Appl Environ Microbiol 68:838–845

    Google Scholar 

  • Craven P, Morales P (2000) The Billiton-Codelco strategy for commercializing copper bioleaching. In: Copper hydromet roundtable 2000. Randol, Golden, Colo., pp 119–126

  • Crundwell FK (2001) Modeling, simulation, and optimization of bacterial leaching reactors. Biotechnol Bioeng 71:255–265

    Article  Google Scholar 

  • Davidson MS (1982) The effects of simulated deep solution mining conditions on the activity of iron and sulfur oxidizing bacteria. PhD Thesis, New Mexico Institute of Mining and Technology

  • Dew DW, Lawson EN, Broadhurst JL (1997) The BIOX process for biooxidation of gold-bearing ores or concentrates. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York; Landes, Berlin, p 45–80

  • Dew DW, Van Buuren C, McEwan, K, Bowker C (2000) Bioleaching of base metal sulphide concentrates: a comparison of high and low temperature bioleaching. J S Afr Inst Min Metall Nov/Dec:409–413

  • DeWulf-Durand P, Bryant LJ, Sly LI (1997) PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl Environ Microbiol 63:2944–2948

    PubMed  Google Scholar 

  • Dixon DG (2000) Analysis of heat conservation during copper sulphide heap leaching. Hydrometallurgy 58:27–41

    Article  CAS  Google Scholar 

  • Dopson M, Lindstrom EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40

    CAS  PubMed  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    CAS  PubMed  Google Scholar 

  • Ehrlich HL (1999) Past, present and future of biohydrometallurgy. In: Amils R, Ballester A (eds), Biohydrometallurgy and the environment toward the mining of the 21st century, IBS99. Elsevier, Amsterdam, pp 3–12

  • Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferric ions. Appl Environ Microbiol 65:5285–5292

    Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lundsorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron oxidizing, cell wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the archaea. Int J Syst Evol Microbiol 50:997–1006

    CAS  PubMed  Google Scholar 

  • Harrison VF, Gow WA, Ivarson KC (1966) Leaching of uranium from Elliot Lake ore in the presence of bacteria. Can Mineral J 87:64–67

    CAS  Google Scholar 

  • Ingledew WJ (1990) Acidophiles. In: Edwards C (ed), Microbiology of extreme environments. McGraw-Hill, New York, pp 33–54

  • Johansson C, Shrader V, Suissa J, Adutwum K, Kohr W (1999) Use of the GEOCOAT™ process for the recovery of copper from chalcopyrite. In: Amils R, Ballester A (eds), Biohydrometallurgy and the environment toward the mining of the 21st century, IBS99. Elsevier, Amsterdam, pp 569–576

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera of Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    PubMed  Google Scholar 

  • Marais HJ (1990) Bacterial oxidation of arseno-pyrite refractory gold ore. In: Innovation in metallurgical plant. South African Institute of Mining and Metallurgy, Johannesburg, pp 125–129

  • Markosyan GE (1972) A new iron-oxidizing bacterium—Leptospirillum ferrooxidans nov. gen. nov. sp (in Russian). Biol J Armenia 25:26–29

    Google Scholar 

  • Matin A (1999) pH homeostasis in acidophiles. In: Bacterial responses to pH. Novartis Foundation Symposium 221. Wiley, New York, pp 152–165

  • McCready RGL, Gould WB (1990) Bioleaching of uranium. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 107–125

  • Miller PC (1997) The design and operating practice of bacterial oxidation plant using moderate thermophiles (the BacTech Process). In: Rawlings DE (ed) Biomining: theory, microbes, and industrial processes, Springer, Berlin Heidelberg New York, pp 81–102

  • Murr LE, Brierley JA (1978) The use of large-scale test facilities in studies of the role of microorganisms in commercial leaching operations. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, New York, pp 491–520

  • Norris PR, Kelly DP (1978) Dissolution of pyrite (FeS2) by pure and mixed cultures of some acidophilic bacteria. FEMS Microbiol Lett 4:143–146

    Article  CAS  Google Scholar 

  • Norris PR, Barr DW, Hinson D (1988) Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP (eds) Biohydrometallurgy, proceedings of the international symposium 1987. Science and Technology Letters, Kew, Surrey, UK, pp 43–60

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943

    Google Scholar 

  • Olson GJ, Clark TR (2001) Bioleaching of a mixed copper sulfide ore containing enargite and luzonite. In: Ciminelli VST, Garcia O (eds) Biohydrometallurgy: fundamentals technology and sustainable development, part A. Elsevier, Amsterdam, pp 543–551

  • Olson GJ, Porter FD, Rubinstein J, Silver S (1982) Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans. J Bacteriol 151:1230–1236

    CAS  PubMed  Google Scholar 

  • Pizarro J, Jedlicki E, Orellana O, Romero J, Espejo RT (1996) Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl Environ Microbiol 62:1323–1328

    PubMed  Google Scholar 

  • Rawlings DE (1995) Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans, and Leptospirillum ferrooxidans strains in leaching environments. In: Jerez CA, Vargas T, Toledo H, Wiertz JV (eds) Biohydrometallurgical processing. University of Chile, Santiago, pp 9–17

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13

    CAS  PubMed  Google Scholar 

  • Ream BP, Schlitt WJ (1997) Kennecott’s Bingham Canyon heap leach program, part 1: the test heap and SX-EW pilot plant. In: ALTA 1997, Copper hydrometallurgy forum, Brisbane, Australia

  • Riekkola-Vanhanen M, Heimala S (1993) Electrochemical control in the biological leaching of sulfide ores. In: Torma AE, Wey JE, Lakshmanan VL (eds) Biohydrometallurgical technologies. The Minerals, Metals and Materials Society, Warrendale, Pa., pp 561–570

  • Ritchie AIM (1997) Optimization of biooxidation heaps. In: Rawlings DE (ed), Biomining: theory, microbes, and industrial processes, Springer, Berlin Heidelberg New York, pp 211–226

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol: DOI 10.1007/s00253-003-1448-7

    Google Scholar 

  • Romano P, Blazquez ML, Alguacil FJ, Munoz JA, Ballester A, Gonzalez F (2001) Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria. FEMS Microbiol Lett 196:71–75

    Article  CAS  PubMed  Google Scholar 

  • Sand W, Gehrke T (1999) Analysis and function of the EPS from the strong acidophile Thiobacillus ferrooxidans. In: Wingender W, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances. Springer, Berlin Heidelberg New York, pp 127–141

  • Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92

    Google Scholar 

  • Schippers A, Sand W (1997) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    Google Scholar 

  • Staden P van, Rhodes M, Martinez T (2003) Piloting and feasibility study of a bioleach process for the treatment of polymetallic base metal concentrate. Abstracts of the Annual Meeting of the Society for Mining, Metallurgy and Exploration, 24–26 February 2003, Cincinnati, Ohio

  • Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK (1999) Effect of various ions, pH and osmotic pressure on oxidation of elemental sulphur by Thiobacillus thiooxidans. Appl Environ Microbiol 65:5163–5168

    Google Scholar 

  • Tempel K (2003) Commercial biooxidation challenges at Newmont’s Nevada operations. In: 2003 SME Annual Meeting, Preprint 03–067, Soc Mining, Metallurgy and Exploration, Littleton, Colo.

  • Temple KL, Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J Bacteriol 62:605–611

    CAS  Google Scholar 

  • United States National Research Council (2002) Evolutionary and revolutionary technologies for mining. National Academy Press, Washington, D.C.

  • Vasquez M, Espejo RT (1997) Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration. Appl Environ Microbiol 63:332–334

    Google Scholar 

  • Whitlock JL (1997) Biooxidation of refractory gold ores (the Geobiotics process). In: Rawlings DE (ed) Biomining: theory, microbes, and industrial processes. Springer, Berlin Heidelberg New York, pp 117–127

  • Zimmerley SR, Wilson DG, Prater JD (1958) Cyclic leaching process employing iron oxidizing bacteria. US Patent 2,829,964

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, G.J., Brierley, J.A. & Brierley, C.L. Bioleaching review part B:. Appl Microbiol Biotechnol 63, 249–257 (2003). https://doi.org/10.1007/s00253-003-1404-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1404-6

Keywords

Navigation