Skip to main content

Advertisement

Log in

Modern aspects of mushroom culture technology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production and culture of new species of mushrooms is increasing. The breeding of new strains has significantly improved, allowing the use of strains with high yield and resistance to diseases, increasing productivity and diminishing the use of chemicals for pest control. The improvement and development of modern technologies, such as computerized control, automated mushroom harvesting, preparation of compost, production of mushrooms in a non-composted substrate, and new methods of substrate sterilization and spawn preparation, will increase the productivity of mushroom culture. All these aspects are crucial for the production of mushrooms with better flavor, appearance, texture, nutritional qualities, and medicinal properties at low cost. Mushroom culture is a biotechnological process that recycles ligninocellulosic wastes, since mushrooms are food for human consumption and the spent substrate can be used in different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullah N, Iqbal M, Zafar SI (1995) Potential of immobilized fungi as viable inoculum. Mycologist 9:168–171

    Google Scholar 

  • Abosriwil SO, Clancy KJ (1999) Sensitivity of Agaricus bisporus spawn for fungicides. Ann Appl Biol 134:34–35

    Google Scholar 

  • Adamovic M, Milenkovic I, Grbic G, Radovanovic M (1998) The results of utilization spent wheat straw compost for cultivation of Pleurotus ostreatus (Jacq. Fr.) Kumm in cattle feeding. Proc Int Symp Sci Cultiv Mushrooms 1998:44

    Google Scholar 

  • Anoliefo GO, Isikhuemhen OS, Okosolo EC (1999) Traditional coping mechanisms and environmental sustainability strategies in Nnewi. J Agric Environ Ethics 11:101–109

    Article  Google Scholar 

  • AntSaoir SM, Mansfield J, Webster AD (2000) The potential for spent mushroom compost as a mulch for weed control in Bramley orchards. Acta Hortic 525:427–429

    Google Scholar 

  • Astell R (1996) Automated mushroom harvesting. Mushroom News 44:22–25

    Google Scholar 

  • Batista JG, Batista ERB, Mateus FF (2000) Effectiveness of two biodegradation methods on the physical characteristics of compost for horticultural purposes. Acta Hortic 517:293–302

    CAS  Google Scholar 

  • Bis’ko NA, Shashek V, Bilai VT, Erbanova P (1995) Biotransformation of plant substrate during cultivation process of Auricularia polytrichia (Mont.) Sacc. Mikol Fitopatol 29:1–5

    CAS  Google Scholar 

  • Bisht NS, Harsh NSK (1984) Utilization of waste tea leaves—preparation of spawn of Agaricus bisporus and Volvariella volvacea. Mushroom J 139:231–236

    Google Scholar 

  • Braun A, Wolter M, Zadrazil F, Flachowsky G, Mba CC (2000) Bioconversion by Lentinus tuber regium and its potential utilization as food, medicine and animal feed. Mushroom Sci 15:549–558

    CAS  Google Scholar 

  • Callac P, Billette C, Imbernon M, Kerrigan RW (1993) Morphological, genetical and intersterility analyses reveal a novel tetrasporic variety of Agaricus bisporus from the Sonoran desert of California. Mycologia 85:835–851

    Google Scholar 

  • Capelari M, Zadrazil F (1997) Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiol 42:481–487

    CAS  Google Scholar 

  • Celikel G, Tuncay O (1999) Influence of re-using substrates on the yield and earliness of eggplant in soilless culture. Acta Hortic 491:357–362

    Google Scholar 

  • Chang ST (1999) World production of cultivated edible and mushrooms in 1997 with emphasis on Lentinus edodes (Berk.) Sing. in China. Int J Med Mushrooms 1:291–300

    Google Scholar 

  • Chang ST, Hayes WA (1978) The biology and cultivation of edible mushrooms. Academic Press, New York

  • Chang ST, Miles PG (1989) Edible mushrooms and their cultivation. CRC Press, Boca Raton, Fla.

  • Chen AW (1998) Ganoderma lucidum (Reishi): cultivation in North America. Proc Int Symp Sci Cultiv Mushrooms 1998:175–197

    Google Scholar 

  • Chong C (1999) Experiences with the utilization of wastes in nursery potting mixes and as field soil amendments. Can J Plant Sci 79:139–148

    Google Scholar 

  • Chong C, Rinker DL (1994) Use of spent mushroom substrates for growing containerized woody ornamentals: an overview. Compost Sci Util 2:45–53

    Google Scholar 

  • Chong C, Wickware M (1989) Mushroom compost trial at Canavonda Nursery. Hortic Rev 7:10–13

    Google Scholar 

  • Chu CH, Wang HH (1977) Effects of low humidity on the activities of mushroom spawn. Tai Mushroom 2:56–64

    Google Scholar 

  • Claxton AR (1979) Some commercial aspects of mushroom spawn. Mushroom J 78:258–261

    Google Scholar 

  • Crisan EW, Sands A (1978) Nutritional value. In: Chang ST, Hayes WA (eds) The biology and cultivation of edible mushrooms. Academic Press, New York, pp 172–189

  • Danell E, Camacho FJ (1997) Successful cultivation of the golden chanterelle. Nature 385:303

    PubMed  Google Scholar 

  • Delver P, Wertheim SJ (1988) Promotion and early growth and cropping of apple by trickle irrigation and planting-hole treatments. Gartenbauwissenschaft 53:128–132

    Google Scholar 

  • Dhar BL, Gupta Y (1998) Cultivation technology of summer big white button mushroom Agaricus bitorquis. Proc Int Symp Sci Cultiv Mushrooms 1998:25–31

    Google Scholar 

  • Díaz-Godínez G, Sánchez C (2002) In situ digestibility and nutritive value of the maize straw generated after Pleurotus ostreatus cultivation. Can J Anim Sci 82:617–619

    Google Scholar 

  • Domsch KH, Zadrazil F (1982) Biotechnological approaches to the development of microbiology foodstuff and fodder from unconventional raw materials. Anim Res Dev 16:51–59

    Google Scholar 

  • Douxi Z, Yue Z (1998) The initial report to Morchella esculenta production in industrialization. Proc Int Symp Sci Cultiv Mushrooms 1998:55

    Google Scholar 

  • Dragt JW, Geels FP, Rutjens AJ, Van Griensven LJLD (1995) Resistance in wild types of Agaricus bisporus to the mycoparasite Verticillium fungicola var. fungicola. Mushroom Sci 14:679–683

    Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production—Pleurotus ostreatus—for bioremediation of creosote contaminated soil. Biodegradation 44:117–126

    Article  CAS  Google Scholar 

  • Fermor TR, Grant WD (1985) Degradation of fungal and actinomycete mycelia by Agaricus bisporus. J Gen Microbiol 129:15–22

    Google Scholar 

  • Friel MT, McLoughlin AJ (2000) Production of a liquid inoculum spawn of Agaricus bisporus. Biotechnol Lett 22:351–354

    Article  CAS  Google Scholar 

  • Harmsen MC, Tolner B, Kram A, Go SJ, Haan A de, Wessels JG (1991) Sequences of three dsRNAs associated with La France disease of the cultivated mushroom (Agaricus bisporus). Curr Genet 20:137–144

    Google Scholar 

  • Hawton P, Bartlett P, Nisbet LJ (2000) Mycocell system. Mushroom Sci 15:897–908

    Google Scholar 

  • Hiller S (1994) Some properties of mushrooms. Int Agrophys 8:635–642

    Google Scholar 

  • Holtz RA, McCulloch M (1999) Process for production of mushroom inoculum. US Patent 5934012

  • Jalc D, Nerud F, Erbanova P, Sirakova P (1996a) Effect of white-rot basidiomycetes-treated wheat straw on rumen fermentation in artificial rumen. Reprod Nutr Dev 36:263–270

    CAS  PubMed  Google Scholar 

  • Jalc D, Nerud F, Zitnan R, Sirakova P (1996b) The effect of white-rot basidiomycetes on chemical composition and in vitro digestibility of wheat straw. Folia Microbiol 41:73–75

    CAS  Google Scholar 

  • Kaiben L, Tiqiang C, Xinjin H, Peigen Z, Zhihe J, Peiyu Y, Furu C, Yu Z (1998) Nutritional components, characteristics of Cd-enrichment and commercial cultivation of Agaricus blazei in Fujian. Proc Int Symp Sci Cultiv Mushrooms 1998:69

    Google Scholar 

  • Kalberer PP (1995) An investigation of the incubation phase of a shiitake (Lentinus edodes) culture. Mushroom Sci 14:375–383

    CAS  Google Scholar 

  • Keljik J (1995) Electric motors and motors controls. Delmar, Albany, N.Y.

  • Kerrigan RW (2000) A brief history of marker assisted selection in Agaricus bisporus. Mushroom Sci 15:183–189

    CAS  Google Scholar 

  • Kirchhoff B (1996) Use of commercial moisture adsorbers to increase the shelf life of fresh mushrooms. In Royce DJ (ed) Mushroom biology and mushroom products. Pennsylvania State University Press, Pittsburgh, pp 437–441

  • Kothe E (2001) Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol 56:602–612

    Article  CAS  PubMed  Google Scholar 

  • Kuo WS, Regan RW (1998) Aerobic carbamate bioremediation aided by compost residuals from the mushroom industry: laboratory studies. Compost Sci Util 6:19–29

    Google Scholar 

  • Laborde J (1995) Dossier Pleurote. INRA Station de Recherches sur les Champignons, Bordeaux

  • Lamber FHM (2000) Computer control in mushroom growing: an updated inventory of applications. Mushroom Sci 15:15–21

    Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Law WM, Lau WN, Lo KL, Wai LM, Chiu SW (2003) Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius. Chemosphere 52:1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Lee E (1994) Production of shiitake, oyster and maitake mushrooms in Connecticut. Mushroom News 3:11–14

    Google Scholar 

  • Lohr VI, O’Brien RG, Coffey DL (1984) Spent mushroom compost in soilless media and its effects on the yield and quality of transplants. J Am Soc Hortic Sci 109:693–697

    Google Scholar 

  • Lomax KM (1989) Managing electricity costs. Mushroom News 37:12–15

    Google Scholar 

  • Lomax KM (1992) Air movement inside a mushroom house. Mushroom News 40:21–29

    Google Scholar 

  • Ma D, Buswell JA (1998) Ligninocellulolytic enzyme production by Volvariella volvacea in relation to substrate colonization and fruit body development. Proc Int Symp Sci Cultiv Mushrooms 1998:156

    Google Scholar 

  • Male RT (1981) The use of spent mushroom compost in vegetable production. Mushroom Sci 11:111–121

    Google Scholar 

  • Morais MH, Ramos AC, Matos N, Santos-Oliveira EJ (2000) Note: production of shiitake mushroom (Lentinus edodes) on ligninocellulosic residues. Food Sci Technol Int 6:123–128

    CAS  Google Scholar 

  • Mori S, Nakagawa-Yoshida K, Tsuchihashi H, Koreeda Y, Kawabata M, Nishiura Y, Ando M, Osame M (1998) Mushroom worker’s lung resulting from indoor cultivation of Pleurotus ostreatus. Occup Med 48:465–468

    Google Scholar 

  • Murphy WS (1972) Development of a mushroom production medium without phase I composting. Mushrooms News 20:4–22

    Google Scholar 

  • Muthukrishnan N, Venugopal MS, Janarthanan R (2000) Recycling spent larval food of Corcyra cephalonica Stainton for preparing spawn and sporophore of Pleurotus sajor-caju (Fr.) Singer. World J Microbiol Biotechnol 16:265-270

    Article  Google Scholar 

  • Nair NG, Brandley JK (1981) Recycling waste plant products as casing materials in mushroom culture. Mushroom Sci 11:147–152

    Google Scholar 

  • Obatake Y, Murakami S, Matsumoto T, Fukumasa-Nakai Y (2003) Isolation and characterization of a sporeless mutant in Pleurotus eryngii. Mycoscience 44:33–40

    Article  Google Scholar 

  • Oei P (1991) Manual of mushroom cultivation. Tool Acta, Amsterdam

  • Oliver JM, Delmas J (1987) Vers la maîtrise des champignons comestibles. Biofutur 1:23–41

    Google Scholar 

  • Olivier JM (2000) Progress in the cultivation of truffles. Mushroom Sci 15:937–942

    Google Scholar 

  • Overtjins A (1998) The conventional phase II in trays or shelves. Mushroom J 584:15–21

    Google Scholar 

  • Ower R (1982) Notes on the development of the morel ascocarp: Morchella esculenta. Mycologia 74:142–144

    Google Scholar 

  • Pataky JK (2002) Production of huitlacoche Hustilago maydis using inoculation techniques developed to screen reactions of sweet corn to common smut. In: Sánchez JE, Huerta G, Montiel (eds) Mushrooms biology and mushroom products. Impresos Júpiter, Cuernavaca, pp 31–35

  • Pegler DN (2001) Useful fungi of the world: mu-erh and silver ears. Mycologist 15:19–20

    Google Scholar 

  • Philippoussis A, Zervakis G, Diamantopoulou P (2001) Bioconversion of agricultural ligninocellulosic wastes through the cultivation of the edible mushroom Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J Microbiol Biotechnol 17:191–200

    Article  CAS  Google Scholar 

  • Pill WG, Evans TA, Garrison SA (1993) Forcing white asparagus in various substrates under cool and warm regimes. Hortic Sci 28:996–998

    Google Scholar 

  • Poppe J (1995) Cultivation of edible mushroom on tropical agricultural wastes. University of Gent, Gent

  • Poppe J (2000) Use of the agricultural waste materials in the cultivation of mushrooms. Mushroom Sci 15:3–23

    Google Scholar 

  • Psurtseva NV (1987) Culture of Flammulina velutipes (Fr.) P. Karst. Biology and economic importance. Mikol Fitopatol 21:477–486

    Google Scholar 

  • Ranganathan DS, Selvaseelan DA (1997) Mushroom spent rice straw compost and composted coir pith as organic manures for rice. J Indian Soc Soil Sci 45:510–514

    CAS  Google Scholar 

  • Ranzani MR, Sturion GL (1998) Amino acid composition evaluation of Pleurotus spp cultivated in banana leaves. Arch Latinoam Nutr 48:339–348

    CAS  PubMed  Google Scholar 

  • Raper CA (1985) Strategies for mushrooms breeding. In: Moore D, Casselton LA, Wood DA, Flankland JC (eds) British Mycological Society Symposium. British Mycological Society, Manchester, pp 513–528

  • Reed JN, Crook S, He W (1995) Harvesting mushrooms by robot. Mushroom Sci 15:385–391

    Google Scholar 

  • Reed JN, Miles SJ, Butler J, Baldwin M (1997) Influence of mushroom strains and population density on the performance of a robotic harvester. J Agric Eng Res 68:215–222

    Article  Google Scholar 

  • Reed JN, Miles SJ, Butler J, Baldwin M, Noble R (2001) Automatic mushroom harvester development. J Agric Eng Res 28:15–23

    Article  Google Scholar 

  • Rinker DL (2002) Handling and using “spent” mushroom substrate around the world. In: Sánchez JE, Huerta G, Montiel E (eds) Mushroom biology and mushroom products. Impresos Júpiter, Cuernavaca, pp 43–60

  • Royse DJ (1997a) Specialty mushrooms: consumption, production and cultivation. Rev Mex Microbiol 13:1–11

    Google Scholar 

  • Royse DJ (1997b) Specialty mushrooms and their cultivation. Hortic Rev 19:59–97

    Google Scholar 

  • Royse DJ, Bahler CC (1986) Effects of genotype, spawn run time and substrate formulation on biological efficiency of shiitake. Appl Environ Microbiol 52:1425–1427

    Google Scholar 

  • Saikai T, Tanaka H, Fuji M, Sugawara H, Takeya I, Tsunematsu K, Abe S (2002) Hypersensitivity pneumonitis by spore of Pleurotus eryngii (eringi). Int Med 41:571–573

    Google Scholar 

  • Sánchez JE, Royse DJ, Hernández G (2002) Development of non-composted substrates for production of Agaricus bisporus. In: Sánchez JE, Huerta G, Montiel E (eds) Mushroom biology and mushroom products. Impresos Júpiter, Cuernavaca, pp 265–270

  • Sarkar BB, Chakravarty DK (1982) Use of polypropylene bags as containers for mushrooms spawn. Sci Cult 48:219–220

    Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants: a review. Environ Pollut 112:269–283

    Article  CAS  PubMed  Google Scholar 

  • Senti G, Leser C, Lunderg M, Wuthrich B (2000) Allergic asthma to shiitake and oyster mushroom. Allergy 55:975–976

    Article  CAS  PubMed  Google Scholar 

  • Shandilya TR (1989) Mushroom compost and casing research in India. Mushroom Sci 12:743–752

    Google Scholar 

  • Silverio CM, Vilela LC (1982) Economic viability of Auricularia production using composted sawdust. NSTA Technol J 7:4–13

    Google Scholar 

  • Sinden JW, Heuser E (1953) The nature of the short composting process and its relation to short composting. Mushroom Sci 2:123–131

    Google Scholar 

  • Singh M, Singh RP, Chaube HS (2000) Impact of physico-chemical properties of casing on yield of Agaricus bisporus (Lange) Imbach. Mushroom Sci 15:441–446

    CAS  Google Scholar 

  • Singh RN, Bhandari KS, Adhikari KS, Kanaujia JP (1992) Physio-chemical parameters of casing soil in relation to yield of button mushroom (Agaricus brunnescens). Indian J Mycol Plant Pathol 22:160–164

    CAS  Google Scholar 

  • Söchting H, Grabbe K (1995) The production and utilization of organic-mineral fertilizer from spent mushroom compost. Mushroom Sci 14:907–915

    Google Scholar 

  • Sonnenberg ASM (2000) Genetics and breeding of Agaricus bisporus. Mushroom Sci 15:25–39

    CAS  Google Scholar 

  • Sonnenberg ASM, Van Kempen IPJ, Van Griensven LJLD (1995) Detection of Agaricus bisporus viral dsRNAs in pure cultures, spawn and spawn-run compost by RT-PCR. Mushroom Sci 14: 587–594

    CAS  Google Scholar 

  • Stamets P (2000) Growing gourmet and medicinal mushrooms, 3rd edn. Ten Speed Press, Berkley

  • Steffen KL, Dann MS, Fager K, Fleischer SJ, Harper JK (1994) Short-term and long-term impact on an initial large scale SMS soil amendment on vegetable crop productivity and resource use efficiency. Compost Sci Util 2:75–83

    Google Scholar 

  • Steffen KL, Dann MS, Harper JK, Fleischer SJ, Mkhize SS, Grenoble DW, MacNab AA, Fager K, Russo JM (1995) Evaluation of the initial season for the implementation of four tomatoes production systems. J Am Soc Hortic Sci 102:148–156

    Google Scholar 

  • Stewart DPC, Cameron KC, Cornforth IS (1998) Effects of spent mushroom substrate on soil chemical conditions and plant growth in an intensive horticultural system: a comparison with inorganic fertilizer. Aust J Soil Res 36:185–198

    Google Scholar 

  • Stewart DPC, Cameron KC, Cornforth IS, Main BE (2000) Release of sulphate-sulphur, potassium, calcium and magnesium from spent mushroom compost under field conditions. Biol Fert Soils 31:128–133

    Article  CAS  Google Scholar 

  • Stoop JM, Mooibroek H (1999) Advances in genetic analysis and biotechnology of the cultivated button mushroom Agaricus bisporus. Appl Microbiol Biotechnol 52:474–483

    Article  CAS  Google Scholar 

  • Szmidt RAK (1994) Recycling of spent mushroom substrates by aerobic composting to produce novel horticultural compost. Compost Sci Util 2:63–72

    Google Scholar 

  • Tillett RD, Batchelor BG (1991) An algorithm for locating mushrooms in a growing bed. Comput Electr Agric 6:191–200

    Article  Google Scholar 

  • Vaario LM, Guerin-Laguette A, Matsushita N, Suzuki K, Lapeyrie F (2002) Saprobic potential of Tricholoma matsutake: growth over pine bark treated with surfactants. Mycorrhiza 12:1–5

    CAS  PubMed  Google Scholar 

  • Verdonck O (1984) Reviewing and evaluation of new materials used as substrates. Acta Hortic 150:467–473

    Google Scholar 

  • Walker S (1996) Automated environments. Mushroom News 44:26–27

    Google Scholar 

  • Webb MD, Ewbank G, Perkings J, McCarthy AJ (2001) Metabolism of pentachlorophenol by Saccharomonospora viridis strains isolated from mushroom compost. Soil Biol Biochem 33:1903–1914

    Article  CAS  Google Scholar 

  • Wuest PJ (1977) Compost and the composting technique. Mushroom News 2:11–16

    Google Scholar 

  • Wuest PJ, Fahy HK (1991) Mushrooms compost: traits and uses. Mushroom News 39:9–15

    Google Scholar 

  • Xawek V, Bhatt T, Cajthami T, Malachová K, Lednicka D (2003) Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Arch Environ Contam Toxicol 44:336–342

    Article  PubMed  Google Scholar 

  • Xiao C (1998) Studies on mushroom re-cultivation on use compost waste. Proc Int Symp Sci Cultiv Mushrooms 1998:56

    Google Scholar 

  • Yamanaka K, Namba K, Tajiri A (2000) Fruit body formation of Boletus reticulatus in pure culture. Mycoscience 41:189–191

    Google Scholar 

  • Zadrazil F (1977) The conversion of straw into feed by Basidiomycetes. Eur J Appl Microbiol 4:273–281

    CAS  Google Scholar 

  • Zadrazil F (1993) Lentinula (=Lentinus) edodes: physiology and condition of industrial production. Mushroom Inf 6:5-27

    Google Scholar 

  • Zadrazil F (1996) Bioconversion of ligninocellulose into ruminant feed with white rot fungi-review of work done at the FAL, Braunschweig. J Appl Anim Res 10:105–124

    Google Scholar 

  • Zadrazil F (1997) Changes in in vitro digestibility of wheat straw during fungal growth and after harvest of oyster mushrooms (Pleurotus spp) on laboratory and industrial scale. J Appl Anim Res 11:37–48

    Google Scholar 

  • Zadrazil F (1998) Straw decomposition by fungi (Basidiomycetes) with its subsequent use as edible mushroom feed supplement or compost. Proc Int Symp Sci Cultiv Mushrooms 1998:157

    Google Scholar 

  • Zadrazil F (2000) Is conversion of ligninocellulosics into feed with white rot fungi realizable? Practical problems of scale-up and technology transfer. Mushroom Sci 15:919–928

    CAS  Google Scholar 

Download references

Acknowledgement

I am grateful to Dr. A.L. Demain for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, C. Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64, 756–762 (2004). https://doi.org/10.1007/s00253-004-1569-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1569-7

Keywords

Navigation