Skip to main content
Log in

Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An agar-degrading bacterium, strain JAMB-A7, was isolated from the sediment in Sagami Bay, Japan, at a depth of 1,174 m and identified as a novel species of the genus Microbulbifer. The gene for a novel β-agarase from the isolate was cloned and sequenced. It encodes a protein of 441 amino acids with a calculated molecular mass of 48,989 Da. The deduced amino acid sequence showed similarity to those of known β-agarases in glycoside hydrolase family 16, with only 34–55% identity. A sequence similar to a carbohydrate-binding module was found in the C-terminal region of the enzyme. The recombinant agarase was hyper-produced extracellularly using Bacillus subtilis as the host, and the enzyme purified to homogeneity had a specific activity of 398 U (mg protein)–1 at pH 7.0 and 50°C. It was thermostable, with a half-life of 502 min at 50°C. The optimal pH and temperature for activity were around 7 and 50°C, respectively. The pattern of agarose hydrolysis showed that the enzyme was an endo-type β-agarase, and the final main product was neoagarotetraose. The activity was not inhibited by NaCl, EDTA, and various surfactants at high concentrations. In particular, sodium dodecyl sulfate had no inhibitory effect up to 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4a, b
Fig. 5
Fig. 6a, b

Similar content being viewed by others

References

  • Aoki T, Araki T, Kitamikado M (1990) Purification and characterization of a novel beta-agarase from Vibrio sp. AP-2. Eur J Biochem 187:461–465

    CAS  PubMed  Google Scholar 

  • Araki C (1966) Some recent studies on the polysaccharides of agarophytes. In: Young EG, Maclachan JL (eds) Proceedings of the International Seaweed Symposium 5,1965, Pergamon Press, London, pp 3–17

  • Araki T, Lu Z, Morishita T (1998) Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J Mar Biotechnol 6:193–197

    PubMed  Google Scholar 

  • Belas R (1989) Sequence analysis of the agrA gene encoding β-agarase from Pseudomonas atlantica. J Bacteriol 171:602–605

    CAS  PubMed  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    CAS  PubMed  Google Scholar 

  • Bong JK, Hak JK, Soon DH, Sun HH, Dae SB, Tae HL, Jai YK (1999) Purification and characterization of β-agarase from marine bacterium Bacillus cereus ASK202. Biotechnol Lett 21:1011–1105

    Article  Google Scholar 

  • Boraston AB, Tomme P, Amandoron EA, Kilburn DG (2000) A novel mechanism of xylan binding by a lectin-like module from Streptomyces lividans xylanase 10A. Biochem J 350:933–941

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Cohen SN (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–115

    CAS  PubMed  Google Scholar 

  • Cowan ST, Steel KJ (1965) Manual for the identification of medical bacteria. Cambridge University Press, London

  • Czjzek M, Bolam DN, Mosbah A, Allouch J, Fontes CM, Ferreira LM, Bornet O, Zamboni V, Darbon H, Smith NL, Black GW, Henrissat B, Gilbert HJ (2001) The location of the ligand-binding site of carbohydrate-binding modules that have evolved from a common sequence is not conserved. J Biol Chem 276:48580–48587

    CAS  Google Scholar 

  • Duckworth M, Yaphe W (1971) Structure of agar. I. Fractionation of a complex mixture of polysaccharides. Carbohydr Res 16:189–197

    Article  CAS  Google Scholar 

  • Ducret A, Van Oostveen I, Eng JK, Yates JR III, Aebersold R (1998) High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci 7:706–719

    PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Google Scholar 

  • Ha JC, Kim GT, Kim SK, Oh TK, Yu JH, Kong IS (1997) β-Agarase from Pseudomonas sp. W7: purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnol Appl Biochem 26:1–6

    CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. Mol Gen Genet 166:557–580

    CAS  Google Scholar 

  • Kendall K, Cullum J (1984) Cloning and expression of an extracellular-agarase from Streptomyces coelicolor A3(2) in Streptomyces lividans 66. Gene 29:315–321

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S (1997) Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem 61:162–163

    CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K (1983) Lipids and cell-wall analysis in bacteria systematics. Methods Microbiol 19:161–203

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Morrice LM, McLean MW, Williamson FB, Long WF (1983a) β-Agarases I and II from Pseudomonas atlantica. Purifications and some properties. Eur J Biochem 135:553–558

    CAS  PubMed  Google Scholar 

  • Morrice LM, McLean MW, Long WF, Williamson FB (1983b) β-Agarases I and II from Pseudomonas atlantica. Substrate specificities. Eur J Biochem 137:149–154

    CAS  PubMed  Google Scholar 

  • Naganuma T, Coury DA, Poline-Fuller M, Gibor A, Horikoshi K (1993) Characterization of agarolytic Microscilla isolates and their extracellular agarases. Syst Appl Microbiol 16:183–190

    CAS  Google Scholar 

  • Nagy T, Simpson P, Williamson MP, Hazlewoo GP, Gilbert HJ, Orosz L (1998) All three surface tryptophans in Type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Lett 429:312–316

    Article  CAS  PubMed  Google Scholar 

  • Notenboom V, Boraston AB, Kilburn DG, Rose DR (2001) Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry 40:6248–6256

    Article  CAS  PubMed  Google Scholar 

  • Potin P, Richard C, Rochas C, Kloareg B (1993) Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur J Biochem 214:599–607

    CAS  PubMed  Google Scholar 

  • Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–885

    Article  CAS  PubMed  Google Scholar 

  • Simpson PJ, Xie HF, Bolam DN, Gilbert HJ, Williamson MP (2000) The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J Biol Chem 275:441137–441142

    Google Scholar 

  • Stackebrandt E, Goebel, BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Sugano Y, Matsumoto T, Kodama H, Noma M (1993a) Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol 59:3750–3756

    CAS  PubMed  Google Scholar 

  • Sugano Y, Terada I, Noma M, Matsumoto T (1993b) Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol 59:1549–1544

    CAS  PubMed  Google Scholar 

  • Sugano Y, Matsumoto T, Noma M (1994) Sequence analysis of the agaB gene encoding a new β-agarase from Vibrio sp. strain JT0107. Biochim Biophys Acta 1218:105–108

    Article  CAS  PubMed  Google Scholar 

  • Sumitomo N, Ozaki K, Hitomi J, Kawaminami S, Kobayashi T, Kawai S, Ito S (1995) Application of the upstream region of a Bacillus endoglucanase gene to high-level expression of foreign genes in Bacillus subtilis. Biosci Biotechnol Biochem 59:2172–2175

    CAS  PubMed  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    CAS  Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microbiol Physiol 37:1–81

    CAS  Google Scholar 

  • Van der Meulen HJ, Harder W (1975) Production and characterization of the agarase of Cytoplaga flevensis. Antonie van Leeuwenhoek 41:431–447

    PubMed  Google Scholar 

  • Vera J, Alvarez R, Murano E, Slebe JC, Leon O (1998) Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl Environ Microbiol 64:4378–4383

    CAS  PubMed  Google Scholar 

  • Waino M, Tindall BJ, Schumann P, Ingvorsen K (1999) Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831

    Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Yoon JH, Kim H, Kang KH, Oh TK, Park YH (2003) Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 53:1357–1361

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa Y, Ametani A, Tsunehiro J, Nomura K, Itoh M, Fukui F, Kaminogawa S (1995) Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Biosci Biotechnol Biochem 59:1933–1937

    CAS  PubMed  Google Scholar 

  • Zhong Z, Toukdarian A, Helinski D, Knauf V, Sykes S, Wilkinson JE, O’Bryne C, Shea T, DeLoughery C, Caspi R (2001) Sequence analysis of a 101-kilobase plasmid required for agar degradation by a Microscilla isolate. Appl Environ Microbiol 67:5771–5779

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to Dr. Y. Sakano of Tokyo University of Agriculture and Technology for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, Y., Hatada, Y., Nogi, Y. et al. Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer . Appl Microbiol Biotechnol 64, 505–514 (2004). https://doi.org/10.1007/s00253-004-1573-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1573-y

Keywords

Navigation