Skip to main content
Log in

Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A gramicidin-S-producing Bacillus brevis 18-3 biofilm was shown to reduce corrosion rates of mild steel by inhibiting both the sulfate-reducing bacterium Desulfosporosinus orientis and the iron-oxidizing bacterium Leptothrix discophora SP-6. When L. discophora SP-6 was introduced along with D. orientis to a non-antimicrobial-producing biofilm control, Paenibacillus polymyxa ATCC 10401, a corrosive synergy was created and mild steel coupons underwent more severe corrosion than when only D. orientis was present, showing a 2.3-fold increase via electrochemical impedance spectroscopy (EIS) and a 1.8-fold difference via mass-loss measurements. However, when a gramicidin-S-producing, protective B. brevis 18-3 biofilm was established on mild steel, the metal coupons were protected against the simultaneous attack of D. orientis and L. discophora SP-6. EIS data showed that the protective B. brevis 18-3 biofilm decreased the corrosion rate about 20-fold compared with the non-gramicidin-producing P. polymyxa ATCC 10401 biofilm control. The mass loss for the protected mild steel coupons was also significantly lower than that for the unprotected ones (4-fold decrease). Scanning electron microscope images corroborated the corrosion inhibition by the gramicidin-S-producing B. brevis biofilm on mild steel by showing that the metal surface remained untarnished, i.e., the polishing grooves were still visible after exposure to the simultaneous attack of the sulfate-reducing bacterium and the iron-oxidizing bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams LF, Ghiorse WC (1986) Physiology and ultrastructure of Leptothrix discophora SS-1. Arch Microbiol 145:126–135

    CAS  Google Scholar 

  • Anonymous (1992) Multiple-tube fermentation technique for members of the coliform group. In: Greenberg AE, Clesceri LS, Eaton AD (eds) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation, New York, pp 9-45–9-51

  • ASTM (2000) ASTM standard designation G1-90 (reapproved 1999): standard practice for preparing, cleaning, and evaluating corrosion test specimens. In: ASTM (ed) Annual book of ASTM standards 2000, vol 03.02. American Society for Testing and Materials, Washington, D.C., pp 15–21

  • Azuma T, Harrison GI, Demain AL (1992) Isolation of a gramicidin S hyperproducing strain of Bacillus brevis by use of a fluorescence activated cell sorting system. Appl Microbiol Biotechnol 38:173–178

    CAS  PubMed  Google Scholar 

  • Beloglazov SM, Dzhafarov ZI, Polyakov VN, Demushin NN (1991) Quaternary ammonium salts as corrosion inhibitors of steel in the presence of sulfate-reducing bacteria. Prot Met USSR 27:810–813

    Google Scholar 

  • Booth GH, Cooper PM, Wakerley DS (1966) Corrosion of mild steel by actively growing cultures of sulphate-reducing bacteria. The influence of ferrous iron. Br Corros J 1:345–349

    CAS  Google Scholar 

  • Borenstein SW (1994) Microbiologically influenced corrosion handbook. Woodhead, Cambridge

  • Brouwers GJ, Vijgenboom E, Corstjens PLAM, deVrind JPM, de Vrine-de Jone EW de (2000) Bacterial Mn2+ oxidizing systems and multicopper oxidases: an overview of mechanisms and functions. Geomicrobiol J 17:1–24

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R, Kleinitz W, Widdel F (1987) Sulfate-reducing bacteria and their activities in oil production. J Petrol Technol 39:97–106

    CAS  Google Scholar 

  • Costerton JW (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9:50–52

    Article  CAS  PubMed  Google Scholar 

  • Doi M, Fujita S, Katsuya Y, Sasaki M, Taniguchi T, Hasegawa H (2001) Antiparallel pleated beta-sheets observed in crystal structures of N,N-bis(trichloroacetyl) and N,N-bis(m-bromobenzoyl) gramicidin S. Arch Biochem Biophys 395:85–93

    Article  CAS  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  Google Scholar 

  • Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  CAS  PubMed  Google Scholar 

  • Emerson D, Ghiorse WC (1992) Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl Environ Microbiol 58:4001–4010

    CAS  Google Scholar 

  • Fontana MG (1986) Corrosion Engineering, 3rd edn. McGraw-Hill, New York

  • Franklin MJ, Nivens DE, Vass AA, Mittelman MW, Jack RF, Dowling NJE, White DC (1991) Effect of chlorine and chlorine/bromine biocide treatments on the number and activity of biofilm bacteria and on carbon steel corrosion. Corrosion 47:128–134

    CAS  Google Scholar 

  • Geesey GG (1990) What is biocorrosion? International workshop on industrial biofouling and biocorrosion, Stuttgart, Germany. Springer, Berlin Heidelberg New York, pp 155–164

  • Geiser M, Avci R, Lewandowski Z (2002) Microbially initiated pitting on 316L stainless steel. Int Biodeterior Biodegrad 49:235–243

    Article  CAS  Google Scholar 

  • Gottenbos B, Busscher HJ, Van der Mei HC (2002) Pathogenesis and prevention of biomaterial centered infections. J Mater Sci Mater Med 13:717–722

    Article  CAS  Google Scholar 

  • Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WA (1990) Sulphate-reducing bacteria and their role in biocorrosion. International workshop on industrial biofouling and biocorrosion, Stuttgart, Germany. Springer, Berlin Heidelberg New York, pp 187–193

  • Jayaraman A, Cheng ET, Earthman JC, Wood TK (1997a) Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl Microbiol Biotechnol 48:11–17

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman A, Cheng ET, Earthman JC, Wood TK (1997b) Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms. J Ind Microbiol Biotechnol 18:396–401

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman A, Earthman JC, Wood TK (1997c) Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl Microbiol Biotechnol 47:62–68

    Article  CAS  Google Scholar 

  • Jayaraman A, Hallock PJ, Carson RM, Lee C-C, Mansfeld FB, Wood TK (1999a) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl Microbiol Biotechnol 52:267–275

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman A, Mansfeld FB, Wood TK (1999b) Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J Ind Microbiol Biotechnol 22:167–175

    Article  CAS  Google Scholar 

  • Jayaraman A, Örnek D, Duarte DA, Lee C-C, Mansfeld FB, Wood TK (1999c) Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Appl Microbiol Biotechnol 52:787–790

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    Article  CAS  PubMed  Google Scholar 

  • Lee DL, Hodges RS (2003) Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S. Biopolymers 71:28–48

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194

    CAS  Google Scholar 

  • Licina GJ (1988) Sourcebook for microbiologically influenced corrosion in nuclear power plants RP2812-2. Electric Power Research Institute, Palo Alto, Calif.

  • Maeda T, Negishi A, Komoto H, Oshima Y, Kamimura K, Sugio T (1999) Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants. J Biosci Bioeng 88:300–305

    Article  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mansfeld F (1976) The polarization resistance technique for measuring corrosion currents. In: Fontana MG, Staehle RW (eds) Advances in corrosion science and technology. Plenum, New York, pp 163–262

  • Mansfeld F (1995) Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J Appl Electrochem 25:187–202

    Google Scholar 

  • Mansfeld F, Tsai CH, Shih H (1992) Software for simulation and analysis of electrochemical impedance spectroscopy (EIS) data. ASTM Spec Tech Publ 1154:186–196

    Google Scholar 

  • Mansfeld F, Hsu CH, Sun Z, Örnek D, Wood TK (2002) Ennoblement—a common phenomenon? Corrosion 58:187–191

    CAS  Google Scholar 

  • McInnes C, Kondejewski LH, Hodges RS, Sykes BD (2000) Development of the structural basis for antimicrobial and hemolytic activities of peptides based on gramicidin S and design of novel analogs using NMR spectroscopy. J Biochem 275:14287–14294

    Article  CAS  Google Scholar 

  • Olesen BH, Avci R, Lewandowski Z (2000) Manganese dioxide as a potential cathodic reactant in corrosion of stainless steels. Corros Sci 42:211–227

    Article  CAS  Google Scholar 

  • Olesen BH, Yurt N, Lewandowski Z (2001) Effect of biomineralized manganese on pitting corrosion of type 304L stainless steel. Mater Corros 52:827–832

    Article  CAS  Google Scholar 

  • Örnek D, Jayaraman A, Wood TK, Sun Z, Hsu CH, Mansfeld F (2001) Pitting corrosion control using regenerative biofilms on aluminium 2024 in artificial seawater. Corros Sci 43:2121–2133

    Google Scholar 

  • Örnek D, Jayaraman A, Syrett BC, Hsu C-H, Mansfeld FB, Wood TK (2002a) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate. Appl Microbiol Biotechnol 58:651–657

    Article  PubMed  Google Scholar 

  • Örnek D, Wood TK, Hsu CH, Mansfeld F (2002b) Corrosion control using regenerative biofilms (CCURB) on brass in different media. Corros Sci 44:2291–2302

    Google Scholar 

  • Örnek D, Wood TK, Hsu CH, Sun Z, Mansfeld F (2002c) Pitting corrosion control of aluminum 2024 using protective biofilms that secrete corrosion inhibitors. Corrosion 58:761–767

    Google Scholar 

  • Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G (1999) Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl Microbiol Biotechnol 52:639–646

    Article  CAS  Google Scholar 

  • Rao TS, Sairam TN, Viswanathan B, Nair KVK (2000) Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system. Corros Sci 42:1417–1431

    Article  CAS  Google Scholar 

  • Ren D, Sims JJ, Wood TK (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett Appl Microbiol 34:293–299

    Article  CAS  PubMed  Google Scholar 

  • Tiller AK, Booth GH (1968) Anaerobic corrosion of aluminum by sulphate-reducing bacteria. Corros Sci 8:549–555

    CAS  Google Scholar 

  • Wu M, Hancock REW (1999) Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J Biochem 274:29–35

    Article  CAS  Google Scholar 

  • Zuo R, Örnek D, Syrett BC, Green RM, Hsu C-H, Mansfeld FB, Wood TK (2003a) Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water. Appl Microbiol Biotechnol 64:275–283

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. F. Mansfeld and Mr. Chao-Hung Hsu of the University of Southern California for modeling some of the EIS data. This project is supported by the Electric Power Research Institute (contract EP-P5388-C2665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, R., Wood, T.K. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms. Appl Microbiol Biotechnol 65, 747–753 (2004). https://doi.org/10.1007/s00253-004-1651-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1651-1

Keywords

Navigation