Skip to main content
Log in

Biotechnology of desulfurization of diesel: prospects and challenges

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To meet stringent emission standards stipulated by regulatory agencies, the oil industry is required to make a huge investment to bring down the sulfur content in diesel to the desired level, using conventional hydrodesulfurization (HDS) technology, by which sulfur is catalytically converted to hydrogen sulfide in the presence of hydrogen. These reactions proceed rapidly only at high temperature and pressure and therefore the capital cost as well as the operating cost associated with HDS very high. Biological desulfurization has the potential of being developed as a viable technology downstream of classical HDS. Various attempts have been made to develop biotechnological processes based on microbiological desulfurization employing aerobic and anaerobic bacteria. However, there are several bottlenecks limiting commercialization of the process. This review discusses various aspects of microbial desulfurization and the progress made towards its commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong SM, Sankey BM, Voordouw G (1995) Conversion of dibenzothiophene to biphenyl by sulfate-reducing bacteria isolated from oil field production facilities. Biotechnol Lett 17:1133–1137

    CAS  Google Scholar 

  • Armstrong SM, Sankey BM, Voordouw G (1997) Evaluation of sulfate reducing bacteria for desulfurizing bitumens or its fractions. Fuel 76:223–227

    Article  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorine, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559

    CAS  Google Scholar 

  • Bressler DC, Fedorak PM (2001) Purification, stability and mineralization of 3-hydroxy-2-formyl benzothiophene, a metabolite of dibenzothiophene. Appl Environ Microbiol 67:821–826

    Article  CAS  PubMed  Google Scholar 

  • Chang JH, Chang YK, Ryu HW, Chang HN (2000) Desulfurization of light gas oil in immobilized cell systems of Gordona Sp CYKS1 and Nocardia Sp. CYKS2. FEMS Microbiol Lett 182:309–312

    Article  CAS  PubMed  Google Scholar 

  • Chen JCT, Monticello DJ (1996) Method for separating a petroleum containing emulsion. US patent 5,525,235

  • Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359

    Article  CAS  PubMed  Google Scholar 

  • Constanti M, Giralt J, Bordons A (1994) Desulfurization of dibenzothiophene by bacteria. World J Microbiol Biotechnol 10:510–516

    CAS  Google Scholar 

  • Crawford DL, Gupta RK (1990) Oxidation of dibenzothiophene by Cunninghamella elegans. Curr Microbiol 21:229–232

    CAS  Google Scholar 

  • Darzins A, Mrachko GT (2000) Sphingomonas biodesulfurization catalyst. US patent 6,133,016

  • Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, Al-hawari J, Grossman MJ, Sankey BM, Lau PCK (1997) Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several Rhodococci. Appl Environ Microbiol 63:2915–2919

    CAS  PubMed  Google Scholar 

  • Denome SA, Stanley DC, Olson ES, Young KD (1993) Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 175:6890–6901

    CAS  PubMed  Google Scholar 

  • Eaton RW, Nitterauer JD (1994) Biotransformation of benzothiophene by isopropylbenzene degrading bacteria. J Bacteriol 176:3992–4002

    CAS  PubMed  Google Scholar 

  • Finnerty WR (1993) Organic sulfur biodesulfurization in non-aqueous media. Fuel 72:1631–1634

    Article  CAS  Google Scholar 

  • Frassinetti S, Setti L, Corti A, Farrinelli P, Monteveechi P, Vallini G (1998) Biodegradation of dibenzothiophene by a nodulating isolate of Rhizobium meliloti. Can J Microbiol 44:289–297

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Kirimura K, Kino K, Usami S (2001) Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium pheli WU-F1. FEMS Microbiol Lett 204:129–133

    Article  CAS  PubMed  Google Scholar 

  • Gallagher JR, Olson ES, Stanley DC (1993) Microbial desulphurisation of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36

    Article  CAS  PubMed  Google Scholar 

  • Gallardo ME, Ferrandez A, Lorenzo V De, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160

    CAS  PubMed  Google Scholar 

  • Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553

    CAS  PubMed  Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko G T, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Squires CH, Monticello DJ (1998) Dsz D utilization in desulfurization of DBT by Rhodococcus sp. IGTS8. US patent 5,811,285

  • Grossman MJ, Lee MK, Prince RC, Garrett KK, George GN, Pickering IJ (1999) Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65:181–188

    CAS  PubMed  Google Scholar 

  • Ishii Y, Konishi J, Okada H, Hirasawa K, Onaka T, Suzuki M (2000) Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem Biophys Res Commun 270:81–88

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M (1994) Selective desulphurisation of dibenzothiophene by R. erythropolis D-1. Appl Environ Microbiol 60:223–226

    CAS  Google Scholar 

  • Kayser KJ, Cleveland L, Park HS, Kwak JH, Kolhathar, Kilbane JJ II (2002) Isolation and characterization of a moderate thermophile Mycobacterium pheli GTIS10, capable of dibenzothiophene desulfurization. Appl Microbiol Biotechnol 59:737–745

    Article  CAS  PubMed  Google Scholar 

  • Kilbane JJ III, Jackowski K (1992) Biodesulphurisation of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40:1107–1114

    CAS  Google Scholar 

  • Kim TS, Kim HY, Kim BH (1990) Degradation of organic sulfur compounds and the reduction of dibenzothiophene to biphenyl and hydrogen sulfide. Biotechnol Lett 12:757–761

    CAS  Google Scholar 

  • Kim BH, Kim HY, Kim TS, Park DH (1995) Selectivity of desulfurization activity of Desulfovibrio desulfuricans M6 on different petroleum products. Fuel Process Technol 43:87–94

    Article  CAS  Google Scholar 

  • Kirimura K, Furuya T, Nishii Y, Ishii Y, Kino K, Usami S (2001) Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of C–S bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J Biosci Bioeng 91:262–266

    Article  CAS  Google Scholar 

  • Kobayashi M, Onaka T, Ishii Y, Konishi J, Takaki M, Okada H, Ohta Y, Koizumi K, Suzuki M (2000) Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS Microbiol Lett 187:123–126

    Article  CAS  PubMed  Google Scholar 

  • Kodama K (1977) Induction of dibenzothiophene oxidation by Pseudomonas jianni. Agric Biol Chem 41:1193–1196

    CAS  Google Scholar 

  • Kodama K, Nakatini S, Umehara K, Shimizu K, Minoda Y, Yamada K (1970) Microbial conversion of petro-sulfur compounds. Part III. Isolation and identification of products from dibenzothiophene. Agric Biol Chem 34:1320–1324

    CAS  Google Scholar 

  • Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37:45–50

    CAS  Google Scholar 

  • Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulfur-bond targeted biodesulfurization. Appl Environ Microbiol 63:3164–3169

    CAS  Google Scholar 

  • Konishi J, Ishii Y, Okumura K, Suzuki M (2000a) High-temperature desulfurization by microorganisms. US patent 6,130,081

  • Konishi J, Onaka T, Ishii Y, Suzuki M (2000b) Demonstration of the carbon sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. Strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187:151–154

    Article  CAS  PubMed  Google Scholar 

  • Konishi J, Ishii Y, Onaka T, Yoshinori O, Suzuki M, Kenji M (2000c) Purification & characterization of DBT sulfone monooxgenase and FMN dependent NADH oxidoreductase from the thermophillic bacterium Paenibacillus sp. strain A11-2. J Biosci Bioeng 90:607–613

    Article  CAS  Google Scholar 

  • Kropp KG, Andersson JT, Fedorak PM (1997) Biotransformations of three dimethyl dibenzothiophenes by pure and mixed bacterial cultures. Environ Sci Technol 31:1547–1554

    Article  CAS  Google Scholar 

  • Laborde AL, Gibson DT (1977) Metabolism of dibenzothiophene by a Beijerinckia species. Appl Environ Microbiol 34:783–790

    CAS  PubMed  Google Scholar 

  • Lange EA, Lin Q (2001) compositions comprising 2-(2-hydroxyphenyl) benzene sulfinate and alkyl substituted derivatives thereof. US patent 6,303,562

  • Lee MK, Senius JD, Grossman MJ (1995) Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl Environ Microbiol 61:4362–4366

    CAS  Google Scholar 

  • Li FL, Xu P, Ma CQ, Luo LL, Wang XS (2003) Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 142: 65–70

    Google Scholar 

  • Li MZ, Squires CH, Monticello DJ, Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis strain IGTS8. J Bacteriol 178: 6409–6418

    CAS  PubMed  Google Scholar 

  • Matsui T, Onaka T, Maruhashi K, Kurane R (2001) Benzo[b]thiophene desulfurization by Gordonia rubropertinctus strain T08. Appl Microbiol Biotechnol 57:212–215

    Article  CAS  PubMed  Google Scholar 

  • McFarland BL (1999) Biodesulfurization. Curr Opin Microbiol 2:257–264

    Article  CAS  PubMed  Google Scholar 

  • McFarland BL, Boron DJ, Deever W, Meyer JA, Johnson AR, Atlas RM (1998) Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit Rev Microbiol 24:99–147

    CAS  PubMed  Google Scholar 

  • Monticello DJ (1998) Riding the fossil fuel biodesulfurization wave. Chemtech 28:38–45

    CAS  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546

    Article  CAS  PubMed  Google Scholar 

  • Monticello DJ, Finnerty WR (1985) Microbial desulfurization of fossil fuels. Annu Rev Microbiol 39:371–389

    Article  CAS  PubMed  Google Scholar 

  • Monticello DJ, Bakker D, Finnerty WR (1985) Plasmid mediated degradation of dibenzothiophene by Pseudomonas sp. Appl Environ Microbiol 49:756–760

    CAS  PubMed  Google Scholar 

  • Mormile MR, Atlas RM (1988) Mineralization of dibenzothiophene biodegradation products 3-hydroxy-2-formyl-benzothiophene and dibenzothiopnene sulfone. Appl Environ Microbiol 54:3183–3184

    CAS  PubMed  Google Scholar 

  • Mormile MR, Atlas RM (1989) Biotransformation of dibenzothiophene to dibenzothiophene sulfone by Pseudomonas putida. Can J Microbiol 35:603–605

    CAS  Google Scholar 

  • Naito M, Kawamoto T, Fujino K, Kobayashi M, Marushashi K, Tanaka A (2001) Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Appl Microbiol Biotechnol 55:374–378

    Article  CAS  PubMed  Google Scholar 

  • Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118: 341–344

    Article  CAS  Google Scholar 

  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulfurization of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek 74:119–132

    Article  CAS  PubMed  Google Scholar 

  • Omori T, Monna L, Saiki Y, Kodama T (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. Strain SY1. Appl Environ Microbiol 58:911–915

    CAS  PubMed  Google Scholar 

  • Orr WL (1978) Oil sand and oil shale chemistry. Chemie, New York

    Google Scholar 

  • Oshiro T, Hirata T, Izumi Y (1996) Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolis H-2. FEMS Microbiol Lett 142:65–70

    Article  Google Scholar 

  • Pacheco MA, Lange EA, Pienkos PT, Yu LQ, Rouse MP, Lin Q, Linguist LK (1999) Recent advances in biodesulfurization of diesel fuels. Annu Meet Nat Petrochem Refin Assoc 99:27

    Google Scholar 

  • Pelletier JN (2001) A RACHITT for our toolbox. Nat Biotechnol 19:314–315

    Article  CAS  PubMed  Google Scholar 

  • Piddington CS, Kovacevich BR, Rambosek J (1995) Sequencing and molecular characterization of a DNA region encoding the dibenzothiophene-desulfurization operon of Rhodococcus sp. IGTS8. Appl Environ Microbiol 61:468–475

    CAS  PubMed  Google Scholar 

  • Purdy RF, Lepo JE, Ward B (1993) Biodesulfurization of organic-sulfur compounds. Curr Microbiol 27:219–222

    CAS  Google Scholar 

  • Rambosek J, Piddington CS, Kovacevich BR, Young KD, Denome SA (1999) Recombinant DNA encoding a desulfurization biocatalyst. US patent 5,879,914

  • Resnick SM, Gibson DT (1996) Regio and stereospecific oxidation of flourene, dibenzofuran and dibenzothiphene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol 62:4073–4080

    CAS  PubMed  Google Scholar 

  • Rhee SK, Chang JH, Chan YK, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331

    CAS  PubMed  Google Scholar 

  • Saftić S, Fedorak PM, Andersson JT (1993) Transformations of methyl dibenzothiophenes by three Pseudomonas isolates. Environ Sci Technol 27:2577–2584

    Google Scholar 

  • Setti L, Lanzarini G, Pifferi PG (1997) Whole cell biocatalysis for an oil desulfurization process. Fuel Process Technol 52:145–153

    Article  CAS  Google Scholar 

  • Song C, Ma X (2003) New design approaches to ultra-clean diesel fuels by deep desulfurization and deep aromatization. Appl Catal B Environ 41:207–238

    Article  Google Scholar 

  • Speight JG (1980) The chemistry and technology of petroleum. Dekker, New York

    Google Scholar 

  • Speight JG (1981) The desulfurization of heavy oils and residua. Dekker, New York

    Google Scholar 

  • Takashi O, Keitaro S, Yoshikau I (1997) DBT degrading enzyme responsible for the first step of DBT desulfurization by Rhodococcus erythropolis D1, purification and characterization. J Ferment Bioeng 83:233–237

    Article  Google Scholar 

  • Tanaka Y, Yoshikawa O, Maruhashi K, Kurane R (2002) The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high level of Dsz enzymes in the presence of sulfate. Arch Microbiol 178: 351–357

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Krawiee S (1994) Desulfurization of dibenzothiophene to 2-hydroxybiphenyl by some newly isolated bacterial strains. Arch Microbiol 161:266–271

    Article  CAS  Google Scholar 

  • Watkins LM, Rodriguez R, Schinder D, Broderick R, Cruz M, Chambers R, Ruckman E, Cody M, Mrachko GT (2003) Purification and characterization of the aromatic desulfinase 2-(2′-hydroxyphenyl) benzene sulfinate desulfinase. Arch Biochem Biophys 415:14–23

    Article  CAS  PubMed  Google Scholar 

  • Xi L, Squires CH, Monticello DJ, Childs JD (1997) A flavin reductase stimulates Dsz A and Dsz C proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75

    Article  CAS  PubMed  Google Scholar 

  • Yu LQ, Meyer TA, Folsom BR (1998) Oil/water/biocatalyst three phase separation process. US patent 5,772,901

  • Yamada KO, Morimoto M, Tani Y (2001) Degradation of dibenzothiophene by sulfate-reducing bacteria cultured in the presence of only nitrogen gas. J Biosci Bioeng 91:91–93

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Centre for High Technology, Oil India Development Board, Government of India, for their generous financial support (J.K.D., P.K.R.C.), and the Council of Scientific and Industrial Research, Government of India, for providing a research fellowship (N.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Deb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Roychoudhury, P.K. & Deb, J.K. Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66, 356–366 (2005). https://doi.org/10.1007/s00253-004-1755-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1755-7

Keywords

Navigation