Skip to main content
Log in

Improvement of alkali solubility of cellulose with enzymatic treatment

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulose was treated with different extracellular microbial enzymes. The treatment of cellulose with the enzymes can improve alkaline solubility. Both endoglucanase and crude cellulase decreased the average degrees of polymerization (\(\overline{{DP}} \)) and improved the alkaline solubility of cellulose most efficiently. The composition of the enzyme, the type of cellulosic materials, pretreatment, and the treatment conditions are the key factors for its effective processing, using the enzymes to improve on alkaline solubility of cellulose. The improvement in the alkaline solubility is caused by the decrease in \(\overline{{DP}} \) and hydrogen bond because of enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose II polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167

    Article  CAS  Google Scholar 

  • Amano Y, Kanda T (2002) New insights into cellulose degradation by cellulases and related enzymes. Trends Glycosci Glycotechnol 14:27–34

    Article  CAS  Google Scholar 

  • Baeza J, Freer J (2001) Chemical characterization of wood and its components. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Dekker, New York, pp 275–383

    Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  • Brown W, Wikstrom R (1965) A viscosity–molecular weight relationship for cellulose in cadoxen and a hydrodynamic interpretation. Eur Polym J 1:1–10

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2002) The properties of enzyme-hydrolyzed cellulose in aqueous sodium hydroxide. Carbohydr Res 337:1453–1457

    Article  CAS  Google Scholar 

  • Cortez JM, Ellis J, Bishop DP (2001) Cellulase finishing of woven, cotton fabrics in jet and winch machines. J Biotechnol 89:239–245

    Article  CAS  Google Scholar 

  • Elias H-G (1984) Part I, structure and properties. In: Macromolecules. Plenum, New York

    Google Scholar 

  • Gan Q, Allen SJ, Taylor G (2003) Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochem 38:1003–1018

    Article  CAS  Google Scholar 

  • Kamide K (2001) Characterization of chemicaly modified cellulose. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Dekker, New York, pp 621–663

    Google Scholar 

  • Olkkonen C et al (2000) Degradation of model compounds for cellulose and ligno-cellulosic pulp during ozonation in aqueous solution. Holzforschung 54:397–406

    Article  CAS  Google Scholar 

  • Pere J, Puolakka A, Nousiainen P, Buchert J (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J Biotechnol 89:247–255

    Article  CAS  Google Scholar 

  • Rabinovich ML, Melnik MS, Boloboba AV (2002) Microbial cellulases (Review). Appl Biochem Microbiol 38:305–321

    Article  CAS  Google Scholar 

  • Rahkamo L et al (1996) Modification of hardwood dissolving pulp with purified Trichoderma reesei cellulases. Cellulose 3:153–163

    Article  CAS  Google Scholar 

  • Rahkamo L, Siika-aho M, Viikari L, Leppanen T, Buchert J (1998a) Effects of cellulases and hemicellulase on the alkaline solubility of dissolving pulps. Holzforschung 52:630–634

    Article  CAS  Google Scholar 

  • Rahkamo L, Viikari L, Buchert J, Paakkari T, Suortti T (1998b) Enzymatic and alkaline treatments of hardwood dissolving pulp. Cellulose 5:79–88

    Article  CAS  Google Scholar 

  • Rogovina SZ, Zhorin VA, Shashkin DP, Yenikolopyan NS (1989) X-ray diffraction study of cellulose after plastic flow under pressure. Polym Sci USSR 31:1376–1380

    Article  Google Scholar 

  • Schulein M (2000) Protein engineering of cellulases. Biochim Biophys Acta, Prot Struct Mol Enzymol 1543:239–252

    Article  CAS  Google Scholar 

  • Schurz J (1999) A bright future for cellulose. Prog Polym Sci 24:481–483

    Article  CAS  Google Scholar 

  • Sharrock KR (1988) Cellulase assay methods: a review. J Biochem Biophys Methods 17:81–105

    Article  CAS  Google Scholar 

  • Stubicar N et al (1998) An X-ray diffraction study of the crystalline to amorphous phase change in cellulose during high-energy dry ball milling. Holzforschung 52:455–458

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  CAS  Google Scholar 

  • van Wyk JPH, Mohulatsi M (2003) Biodegradation of wastepaper by cellulase from Trichoderma viride. Bioresour Technol 86:21–23

    Article  Google Scholar 

  • Wood TM, Bhat GR (1988) Measurement of cellulase activity. Methods Enzymol 160:87–116

    Article  CAS  Google Scholar 

  • Yen J, Mo Z (2001) Modern polymer physics. Science, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Cao or Huimin Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Tan, H. Improvement of alkali solubility of cellulose with enzymatic treatment. Appl Microbiol Biotechnol 70, 176–182 (2006). https://doi.org/10.1007/s00253-005-0069-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0069-8

Keywords

Navigation