Skip to main content
Log in

Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A denitrification system for saline wastewater utilizing halophilic denitrifying bacteria has not been developed so far. In this study, denitrification performance and microbial community under various saline conditions were investigated using denitrifying sludge acclimated under low-salinity condition for a few years as seed sludge. A continuous denitrification experiment showed that denitrification performance and microbial community at 10% salinity was higher than that at 1% salinity. The microbial community in the denitrification sludge that was acclimated under low salinity was monitored by terminal-restriction fragment length polymorphism (T-RFLP) analysis during acclimation to high-salinity condition. T-RFLP profiles and clone analysis based on 16S rRNA-encoding genes in the sludge of the denitrification system with 10% salinity indicated that the γ-Proteobacteria, particularly Halomonas spp., were predominant species, suggesting that these bacterial members were possibly responsible for a high denitrification activity under high-salinity conditions. Furthermore, the investigation of denitrification performance under various saline conditions revealed that 4–10% salinity results in the highest denitrification rate, indicating that this salinity was optimal for predominant bacterial species to exhibit denitrification activity. These results indicate the possibility that an appropriate denitrification system for saline wastewater can be designed using acclimated sludge with a halophilic community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • APHA, AWWA, WEF (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, DC, USA

    Google Scholar 

  • Brettar I, Christen R, Höfle MG (2004) Belliella baltica gen., nov., sp. nov., a novel marine bacterium of the CytophagaFlavobacteriumBacteroides group isolated from surface water of the central Baltic sea. Int J Syst Evol Microbiol 54:65–70

    Article  CAS  PubMed  Google Scholar 

  • Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diner AR, Kargi F (1999) Salt inhibition of nitrification and denitrification in saline wastewater. Environ Technol 20:1147–1153

    Article  Google Scholar 

  • Donachie SP, Hou S, Gregory TS, Malahoff A, Alam M (2003) Idiomarina loihiensis sp. nov., a halophilic γ-Proteobacterium from the Lô’ihi submarine volcano, Hawai’i. Int J Syst Evol Microbiol 53:1873–1879

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Glass C, Silverstein J (1999) Denitrification of high-nitrate high-salinity wastewater. Water Res 33:223–229

    Article  CAS  Google Scholar 

  • Gortshkova NM, Ivanova EP, Sergeev AF, Zhukova NV, Alexeeva Y, Wright JP, Nicolau DV, Mikhailov VV, Christen R (2003) Marinobacter excellens sp. nov., isolated from sediments of the sea of Japan. Int J Syst Evol Microbiol 53:2073–2078

    Article  Google Scholar 

  • Hirata A, Nakamura Y, Tsuneda S (2001) Biological nitrogen removal from industrial wastewater discharged from metal recovery processes. Water Sci Technol 44:171–179

    Article  CAS  PubMed  Google Scholar 

  • Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer K-H, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure–function analysis in microbial ecology. Appl Environ Microbiol 65:1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín S, Márquez MC, Sánchez-Porro C, Mellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387

    Article  PubMed  Google Scholar 

  • Mata JA, Martínez-Cánovas J, Quesada E, Béjar V (2002) A detailed phenotypic characterization of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environment. Kluwer, Dordrecht

    Book  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Peyton BM, Mormile MR, Petersen JN (2001) Nitrate reduction with Halomonas campisalis: kinetics of denitrification at pH 9 and 12.5% NaCl. Water Res 35:4237–4242

    Article  CAS  PubMed  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequencing weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventosa A (2004) Halophilic microorganisms. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and functional in sewage treatment systems. Curr Opin Biotechnol 13:218–227

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Shin DY, Kim IG, Kang KH, Park YH (2003) Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 53:563–568

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Yeo SH, Kim IG, Oh TK (2004) Marinobacter flavimaris sp. nov., and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1799–1803

    Article  CAS  PubMed  Google Scholar 

  • Yoshie S, Noda N, Miyano T, Tsuneda S, Hirata A, Inamori Y (2001) Microbial community analysis in the denitrification process of saline-wastewater by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA and the cultivation method. J Biosci Bioeng 92:346–353

    Article  CAS  PubMed  Google Scholar 

  • Yoshie S, Noda N, Tsuneda S, Hirata A, Inamori Y (2004a) Design of 16S rRNA-targeted oligonucleotide probes and microbial community analysis in the denitrification process of a saline industrial wastewater treatment system. FEMS Microbiol Lett 235:183–189

    Article  CAS  PubMed  Google Scholar 

  • Yoshie S, Noda N, Tsuneda S, Hirata A, Inamori Y (2004b) Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems. Appl Environ Microbiol 70:3152–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshie S, Ogawa T, Makino H, Hirosawa H, Tsuneda S, Hirata A (in press) Characteristics of bacteria showing high denitrification activity in saline wastewater. Lett Appl Microbiol

Download references

Acknowledgement

We thank Matsuda Sangyo Co., Ltd. for the wastewater used in this study and their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tsuneda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshie, S., Makino, H., Hirosawa, H. et al. Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater. Appl Microbiol Biotechnol 72, 182–189 (2006). https://doi.org/10.1007/s00253-005-0235-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0235-z

Keywords

Navigation