Skip to main content
Log in

In situ product recovery (ISPR) by crystallization: basic principles, design, and potential applications in whole-cell biocatalysis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The removal of inhibiting or degrading product from a bioreactor as soon as the product is formed is an important issue in industrial bioprocess development. In this review, the potential of crystallization as an in situ product removal (ISPR) technique for the biocatalytic production of crystalline compounds is discussed. The emphasis of this review is on the current status of crystalline product formation by metabolically active cells for application in fine-chemicals production. Examples of relevant biocatalytic conversions are summarized, and some basic process options are discussed. Furthermore, a case study is presented in which two conceptual process designs are compared. In one process, product formation and crystallization are integrated by applying ISPR, whereas a second, nonintegrated process is based on a known conventional process equivalent for the production of 6R-dihydro-oxoisophorone. The comparison indicates that employing ISPR leads to significant advantages over the nonintegrated case in terms of increased productivity and yield with a corresponding decrease in the number of downstream processing steps, as well as in the quantity of waste streams. This leads to an economically more interesting process alternative. Finally, a general outlook on the various research aspects of ISPR by crystallization is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein. J Bacteriol 177:6027–6032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alba-Perez A (2001) Enhanced microbial production of natural flavours via in situ product adsorption. Ph.D. thesis. Swiss Federal Institute of Technology Zurich (ETHZ), Zurich

  • Arimatsu Y, Bao J, Furumoto K, Yoshimoto M, Fukunaga K, Nakao K (2004) Continuous production of calcium gluconate crystals in an integrated bioreaction–crystallization process using external loop airlift bubble columns with immobilized glucose oxidase gel beads. J Chem Eng Jpn 37:1035–1040

    Article  CAS  Google Scholar 

  • Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Structure of acetobacter cellulose composites in the hydrated state. Int J Biol Macromol 29:193–202

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Koumatsu K, Furumoto K, Yoshimoto M, Fukunaga K, Nakao K (2001) Optimal operation of an integrated bioreaction-crystallization process for continuous production of calcium gluconate using external loop airlift columns. Chem Eng Sci 56:6165–6170

    Article  CAS  Google Scholar 

  • Blacker AJ, Holt RA (1997) Development of a multi-stage chemical and biological process for an optically active intermediate for an anti-glaucoma drug. In: Collins AN, Sheldrake GN, Crosby J (eds) Chirality in industry II. Wiley, Chichester, pp 245–261

    Google Scholar 

  • Buque-Taboada EM, Straathof AJJ, Heijnen JJ, van der Wielen LAM (2004) In situ product removal using a crystallization loop in the asymmetric reduction of 4-oxoisophorone by Saccharomyces cerevisiae. Biotechnol Bioeng 86:795–800

    Article  CAS  PubMed  Google Scholar 

  • Buque-Taboada EM, Straathof AJJ, Heijnen JJ, van der Wielen LAM (2005a) Microbial reduction and in situ product crystallization coupled with biocatalyst cultivation during the synthesis of 6R-dihydro-oxoisophorone. Adv Synth Catal 347:1147–1154

    Article  CAS  Google Scholar 

  • Buque-Taboada EM, Straathof AJJ, Heijnen JJ, van der Wielen LAM (2005b) Substrate inhibition and product degradation during the reduction of 4-oxoisophorone by Saccharomyces cerevisiae. Enzyme Microb Technol 37:625–633

    Article  CAS  Google Scholar 

  • Cardoso JP (1993) A simple model for the optimization of the extraction yield of antibiotics isolated from fermented broths by direct crystallization. Biotechnol Bioeng 42:1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Chartrain M, Roberge C, Chung J, McNamara J, Zhao DL, Olewinski R, Hunt G, Salmon P, Roush D, Yamazaki S, Wang T, Grabowski E, Buckland B, Greasham R (1999) Asymmetric bioreduction of (2-(4-nitro-phenyl)-N-(2-oxo-2-pyridin-3-yl-ethyl)-acetamide) to its corresponding (R) alcohol [(R)-N-(2-hydroxy-2-pyridin-3-yl-ethyl)-2-(4-nitro-phenyl))-acetamide] by using Candida sorbophila MY 1833. Enzyme Microb Technol 25:489–496

    Article  CAS  Google Scholar 

  • Coulson JM, Richardson JF, Backhurst JR, Harker JH (1998). Coulson & Richardson’s chemical engineering, vol 2, 4th edn. Butterworth Heinemann, Oxford

    Google Scholar 

  • Crocq V, Masson C, Winter J, Richard C, Lemaitre G, Lenay J, Vivat M, Buendia J, Prat D (1997) Synthesis of trimegestone: the first industrial application of baker’s yeast mediated reduction of a ketone. Org Process Res Dev 1:2–13

    Article  CAS  Google Scholar 

  • Douglas JM (1988) Conceptual design of chemical processes. McGraw-Hill, New York

    Google Scholar 

  • Dufosse L, Galaup P, Yaron A, Arad SM (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  • Ehrlich HL (1999) Microbes as geologic agents: their role in mineral formation. Geomicrobiol J 16:135–153

    Article  Google Scholar 

  • Fernandes P, Prazeres DMF, Cabral JMS (2003) Membrane-assisted extractive bioconversions. Adv Biochem Eng Biotechnol 80:115–148

    CAS  PubMed  Google Scholar 

  • Freeman A, Woodley JM, Lilly MD (1993) In situ product removal as a tool for bioprocessing [review]. Biotechnol 11:1007–1012

    CAS  Google Scholar 

  • Fukuoka M, Hiraga K, Sekihara T (2001) Microbial production of levodione. European Patent 1074630A2

  • Furui M, Sakata N, Otsuki O, Tosa T (1988) A bioreactor-crystallizer for l-malic acid production. Biocatalysis 2:69–77

    Article  CAS  Google Scholar 

  • Furui M, Furutani T, Shibatani T, Nakamoto Y, Mori T (1996) A membrane bioreactor combined with crystallizer for production of optically active (2R,3S)-3-(4-methoxyphenyl)-glycidic acid methyl ester. J Ferment Bioeng 81:21–25

    Article  CAS  Google Scholar 

  • Grievink J, Luteijn CP, Swinkels PLJ (2004) Instructions manual for conceptual process design. Delft University of Technology, Delft

    Google Scholar 

  • Harano Y, Hibi T, Ooshima H (1986) Enzymatic reaction crystallization of aspartame precursor. Proc World Congress III Chemical Engineering, Tokyo. 8g-303, pp 1044–1047

  • Hurh B, Ohsima M, Yamane T, Nagasawa T (1994) Microbial production of 6-hydroxynicotinic acid, an important building block for the synthesis of modern insecticides. J Ferment Bioeng 77:382–385

    Article  CAS  Google Scholar 

  • Iyer JK, Shi LR, Shankar AH, Sullivan DJ (2003) Zinc protoporphyrin IX binds heme crystals to inhibit the process of crystallization in Plasmodium falciparum. Mol Med 9:175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauregi P, van der Lans RGJM, van der Wielen LAM, Kwant G, Hoeben M (2000) Method of separating a particle mixture. British Patent Application 0015776.8

  • Johnson ME, Riesterer BA, Olson NF (1990) Influence of nonstarter bacteria on calcium lactate crystallization on the surface of cheddar cheese. J Dairy Sci 73:1145–1149

    Article  Google Scholar 

  • Kaščák JS, Kominek J, Roehr M (1996) Lactic acid. In: Roehr M (ed) Biotechnology, vol 6. VCH, Weinheim, pp 294–306

    Google Scholar 

  • Kuimova TF, Kazakov GA (1976) Spontaneous crystallization of antibiotic in submerged fermentation of Actinomyces hygroscopicus. Microbiologia 45:746–749

    CAS  Google Scholar 

  • Leuenberger HGW (1985) Microbiologically catalyzed reaction steps in the field of vitamin and carotenoid synthesis. In: Tramper J, van der Plas HC, Linko P (eds) Biocatalysts in organic synthesis. Elsevier, Amsterdam, pp 99–118

    Google Scholar 

  • Leuenberger HGW, Boguth W, Widmer E, Zell R (1976) Synthesis of optically active natural carotenoids and structurally related compounds. I. Synthesis of the chiral key compound (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone. Helv Chim Acta 59:1832–1849

    Article  CAS  Google Scholar 

  • Li SZ, Li XY, Wang DZ (2004) Crystallization of oxytetracycline from fermentation waste liquor: influence of biopolymer impurities. J Colloid Interface Sci 279:100–108

    Article  CAS  PubMed  Google Scholar 

  • Lide DR (ed) (2004) CRC handbook of chemistry and physics, 85th edn. CRC Press, Boca Raton

  • Lye GJ, Woodley JM (1999) Application of in situ product removal techniques to biocatalytic processes. Trends Biotechnol 17:395–402

    Article  CAS  PubMed  Google Scholar 

  • Matsumae H, Akatsuka H, Shibatani T (1999) Diltiazem synthesis. In: Flickinger MC, Drew SJ (eds) Encyclopedia of bioprocess technology. Wiley, New York, pp 823–840

    Google Scholar 

  • McPherson A (1999) Crystallization of biological macromolecules. CSHL Press, New York

    Google Scholar 

  • Michielsen MJF, Frielink C, Wijffels RH, Tramper J, Beeftink HH (2000a) Growth of Ca-D-malate crystals in a bioreactor. Biotechnol Bioeng 69:548–558

    Article  CAS  PubMed  Google Scholar 

  • Michielsen MJF, Frielink C, Wijffels RH, Tramper J, Beeftink HH (2000b) Modeling solid-to-solid biocatalysis: integration of six consecutive steps. Biotechnol Bioeng 69:597–606

    Article  CAS  PubMed  Google Scholar 

  • Miller TL (1985) Steroid fermentations. In: Moo-Young M (ed) Comprehensive biotechnology, vol 3. Pergamon, Oxford, pp 297–318

    Google Scholar 

  • Mullin JW (2001) Crystallization, 4th edn. Butterworth Heinemann, Oxford

    Google Scholar 

  • Nakayama K (1985) Tryptophan. In: Moo-Young M (ed) Comprehensive biotechnology, vol 3. Pergamon, Oxford, pp 621–631

    Google Scholar 

  • Perry RH, Green DW (1999) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Plattner H (2002) My favorite cell — Paramecium. Bioessays 24:649–658

    Article  CAS  PubMed  Google Scholar 

  • Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Schügerl K (2000) Integrated processing of biotechnology products. Biotechnol Adv 18:581–599

    Article  PubMed  Google Scholar 

  • Schügerl K, Hubbuch J (2005) Integrated bioprocesses. Curr Opin Microbiol 8:294–300

    Article  PubMed  CAS  Google Scholar 

  • Sinnott RK (1999) Coulson & Richardson’s chemical engineering, vol. 6, 3rd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  • Sode K, Kajiwara K, Tamiya E, Karube I (1987) Continuous asymmetric reduction of 4-oxoisophorone by thermophilic bacteria using a hollow fiber reactor. Biocatalysis 1:77–86

    Article  CAS  Google Scholar 

  • Stankiewicz A, Moulijn JA (eds) (2004) Re-engineering the chemical processing plant. Marcel Dekker, New York

  • Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last 20 years. Adv Biochem Eng Biotechnol 80:149–175

    CAS  PubMed  Google Scholar 

  • Straathof AJJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19:57–62

    Article  CAS  Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu S, Ryu DDY (1988a) Recirculating bioreactor-separator system for simultaneous biotransformation and recovery of product: immobilized l-aspartate β-decarboxylase reactor system. Biotechnol Bioeng 32:184–191

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu S, Ryu DDY (1988b) New recirculating bioreactor-separator combination system for continuous bioconversion and separation of products. Enzyme Microb Technol 10:593–600

    Article  CAS  Google Scholar 

  • Tavare NS (1995) Industrial crystallization. Process simulation analysis and design. The Plenum chemical engineering series. Plenum, New York

    Google Scholar 

  • Tosa T, Furui M, Sakata N, Otsuki O, Chibata I (1988) Design of a bioreactor using immobilized biocatalysts for the slurry reaction: production of l-malic acid. Ann NY Acad Sci 542:440–443

    Article  CAS  Google Scholar 

  • Ueda H, Koda T, Sato M (2003) Method for producing l-glutamic acid. US Patent 0190713A1

  • van der Wielen LAM, Luyben KCAM (1992) Integrated product formation and recovery in fermentation. Curr Opin Biotechnol 3:130–138

    Article  PubMed  Google Scholar 

  • van Loon APGM, Hohmann HP, Bretzel W, Hübelin M, Pfister M (1996) Development of a fermentation process for the manufacture of riboflavin. Chimia 50:410–412

    Article  Google Scholar 

  • van’t Riet K, Tramper J (1991) Basic bioreactor design. Marcel Dekker, New York

    Book  Google Scholar 

  • von Stockar U, van der Wielen LAM (2003) Process integration challenges in biotechnology. Yesterday, today and tomorrow. Adv Biochem Eng Biotechnol 80:IX–XV

    Google Scholar 

  • Zhang J, Collins A, Chen M, Knyazev I, Gentz R (1998) High-density perfusion culture of insect cells with a Biosep ultrasonic filter. Biotechnol Bioeng 59:351–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has partly been funded by the Joint Financing Program for Cooperation in Higher Education–University of San Carlos–Delft University of Technology Project in Chemical Engineering. The following persons are gratefully acknowledged for their important contributions to this work: Sjoerd Blokker, Marcel Dabkowski, Willem Groendijk, Dirk Renckens, Jeroen de Rond, and Prof.dr.ir. Johan Grievink of the Delft University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrie J. J. Straathof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buque-Taboada, E.M., Straathof, A.J.J., Heijnen, J.J. et al. In situ product recovery (ISPR) by crystallization: basic principles, design, and potential applications in whole-cell biocatalysis. Appl Microbiol Biotechnol 71, 1–12 (2006). https://doi.org/10.1007/s00253-006-0378-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0378-6

Keywords

Navigation