Skip to main content
Log in

Influence of extrinsic factors on granulation in UASB reactor

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this mini-review is to synthesize and analyze information on how the process of granulation is affected by environmental and operational conditions in the reactor. The factors reviewed are temperature, pH, alkalinity, organic loading rate, upflow velocity, nature and strength of substrate, nutrients, multivalent cations and heavy metals, microbial ecology of seed sludge, exo-cellular polymer, and addition of natural and synthetic polymers. Careful temperature control and adequate alkalinity is required for generation and maintenance of granules. Nature and strength of substrate in conjunction with intra-granular diffusion to a large extent determines the microstructure of the granules. The divalent cations such as calcium and iron may enhance granulation by ionic bridging and linking exo-cellular polymers. However, their presence in excess may lead to cementation due to precipitation leading to increased ash content and mass transfer limitation. The addition of external additives such as ionic polymers may enhance granulation in the upflow anaerobic sludge blanket reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn YH (2000) Physicochemical and microbial aspects of anaerobic granular pallets. J Environ Sci Health A 35:1617–1635

    Google Scholar 

  • Ahn YH, Song YJ, Lee YJ, Park S (2002) Physicochemical characterization of UASB sludge with different size distributions. Environ Technol 23:889–897

    CAS  PubMed  Google Scholar 

  • Alibhai KRK, Forster CF (1986) An examination of granulation process in UASB reactors. Environ Technol Lett 7:193–200

    CAS  Google Scholar 

  • Alphenaar PA, Sleyster R, de Reuver P (1993) Phosphorus requirement in high-rate anaerobic wastewater treatment. Water Res 27:749–756

    CAS  Google Scholar 

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: effect of ammonia. Appl Microbiol Biotechnol 38:560–564

    CAS  Google Scholar 

  • Artola A, Balaguer MD, Rigola M (1997) Heavy metal binding to anaerobic sludge. Water Res 31:997–1003

    CAS  Google Scholar 

  • Batstone DJ, Keller J (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res 35:1723–1729

    CAS  PubMed  Google Scholar 

  • Blaszczyk R, Gardner D, Kosaric N (1994) Response and recovery of anaerobic granules from shock loading. Water Res 28:675–680

    CAS  Google Scholar 

  • Blonskaja V, Menert A, Vilu R (2003) Use of two-stage anaerobic treatment for distillery waste. Adv Environ Res 7:671–678

    CAS  Google Scholar 

  • Boari G, Brunetti A, Passino R, Rozzi A (1984) Anaerobic digestion of olive oil mill wastewaters. Agric Wastes 10:161–175

    CAS  Google Scholar 

  • Borja R, Banks CJ, Sanchez E (1996) Anaerobic treatment of palm oil mill effluent in a two-stage up-flow anaerobic sludge blanket (UASB) system. J Biotechnol 45:125–135

    CAS  Google Scholar 

  • Calli B, Mertoglu B, Inanc B, Yenigun O (2005) Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem 40:1285–1292

    CAS  Google Scholar 

  • Chou HH, Huang JS (2005) Comparative granule characteristics and biokinetics of sucrose-fed and phenol-fed UASB reactors. Chemosphere 59:107–116

    CAS  PubMed  Google Scholar 

  • Chou HH, Huang JS, Hong WF (2004) Temperature dependency of granule characteristics and kinetic behavior in UASB reactors. J Chem Technol Biotechnol 79:797–808

    CAS  Google Scholar 

  • Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Ecol 38:353–360

    CAS  Google Scholar 

  • Costello DJ, Greenfield PF, Lee PL (1991a) Dynamic modelling of a single-stage high-rate anaerobic reactor—I. Model derivation. Water Res 25:847–858

    CAS  Google Scholar 

  • Costello DJ, Greenfield PF, Lee PL (1991b) Dynamic modelling of a single-stage high-rate anaerobic reactor—II. Model verification. Water Res 25:859–871

    CAS  Google Scholar 

  • Dohanyos M, Kosova B, Zabranska J, Grau P (1985) Production and utilization of volatile fatty acids in various types of anaerobic reactors. Water Sci Technol 17:191–205

    CAS  Google Scholar 

  • Dolfing J (1986) Granulation in UASB reactors. Water Sci Technol 18:15–25

    CAS  Google Scholar 

  • Driessen W, Yspeert P (1999) Anaerobic treatment of low, medium and high strength effluent in the agro-industry. Water Sci Technol 40:221–228

    CAS  Google Scholar 

  • El-Mamouni R, Leduc R, Guiot SR (1997) Influence of the starting microbial nucleus type on the anaerobic granulation dynamics. Appl Microbiol Biotechnol 47:189–194

    CAS  Google Scholar 

  • El-Mamouni R, Leduc R, Guiot SR (1998) Influence of synthetic and natural polymers on the anaerobic granulation process. Water Sci Technol 38:341–347

    CAS  Google Scholar 

  • Erguder TH, Guven E, Demirer GN (2003) The inhibitory effects of lindane in batch and upflow anaerobic sludge blanket reactors. Chemosphere 50:165–169

    CAS  PubMed  Google Scholar 

  • Fang HHP, Chui HK, Li YY, Chen T (1994) Performance and granule characteristics of UASB process treating wastewater with hydrolyzed proteins. Water Sci Technol 30:55–63

    CAS  Google Scholar 

  • Fang HHP, Chui HK, Li YY (1995) Microstructural analysis of UASB granules treating brewery wastewater. Water Sci Technol 31:129–135

    Google Scholar 

  • Fang HHP, Chen T, Li YY, Chui HK (1996) Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Water Res 30:1353–1360

    CAS  Google Scholar 

  • Florencio L, Field JA, Lettinga G (1995) Substrate competition between methanogens and acetogens during the degradation of methanol in UASB reactors. Water Res 29:915–922

    CAS  Google Scholar 

  • Gallert C, Bauer S, Winter J (1998) Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl Microbiol Biotechnol 50:495–501

    CAS  PubMed  Google Scholar 

  • Ghangrekar MM, Asolekar SR, Joshi SG (2005) Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Res 39:1123–1133

    CAS  PubMed  Google Scholar 

  • Gonzalez JS, Rivera A, Borja R, Sanchez E (1998) Influence of organic volumetric loading rate, nutrient balance and alkalinity: COD ratio on the anaerobic sludge granulation of an UASB reactor treating sugar cane molasses. Int Biodeterior Biodegrad 41:127–131

    CAS  Google Scholar 

  • Gould MS, Genetelli EJ (1984) Effects on complexation on heavy metal binding by anaerobically digested sludges. Water Res 18:123–126

    CAS  Google Scholar 

  • Grotenhuis JT, Smit M, Plugge CM, Xu YS, van Lammeren AA, Stams AJ, Zehnder AJ (1991) Bacterial composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57:1942–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guiot SR, Lavole L, Hawari JA, Samson R (1991) Effect of NSSC spent liquor on granule formation and specific microbial activities in upflow anaerobic reactors. Water Sci Technol 24:139–148

    CAS  Google Scholar 

  • Guiot SR, Pauss A, Costerton JW (1992) A structured model of the anaerobic granule consortium. Water Sci Technol 25:1–10

    CAS  Google Scholar 

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  • Haandel AC, van Lettinga G (1994) Anaerobic sewage treatment: a practical guide for regions with a hot climate. Wiley, Chichester England

    Google Scholar 

  • Hanaki K, Matsuo T, Nagase M (1981) Mechanism of inhibition caused by long-chain fatty acids in the anaerobic digestion process. Biotechnol Bioeng 23:1591–1610

    CAS  Google Scholar 

  • Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12

    CAS  Google Scholar 

  • Henze M, Harremoes P (1983) Anaerobic treatment of wastewater in fixed film reactors—a literature review. Water Sci Technol 15:1–101

    CAS  Google Scholar 

  • Hickey RF, Vanderwielen J, Switzenbaum MS (1989) The effect of heavy metals on methane production and hydrogen and carbon monoxide level during batch anaerobic sludge digestion. Water Res 23:207–218

    CAS  Google Scholar 

  • House WA (1987) Inhibition of calcite crystal growth by inorganic phosphate. J Colloid Interface Sci 119:505–511

    CAS  Google Scholar 

  • Hughes J, Ramsden DK, Symes KC (1990) The flocculation of bacteria using cationic synthetic flocculants and Chitosan. Biotechnol Tech 4:55–60

    CAS  Google Scholar 

  • Hulshoff Pol LW, de Zeeuw WJ, Velzeboer CTM, Lettinga G (1983) Granulation in UASB reactor. Water Sci Technol 15:291–304

    CAS  Google Scholar 

  • Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38:1376–1389

    CAS  PubMed  Google Scholar 

  • Imai T, Ukita M, Liu J, Sekine M, Nakanishi H, Fukagawa M (1997) Advance start up of UASB reactors by adding of water absorbing polymer. Water Sci Technol 15:399–406

    Google Scholar 

  • Isik M, Sponza DT (2005) Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo red azo dye. Bioresour Technol 96:633–643

    CAS  PubMed  Google Scholar 

  • Iza J, Keenan PJ, Switzenbaum MS (1992) Anaerobic treatment of municipal solid waste landfill leachate: operation of a pilot scale hybrid UASB/AF reactor. Water Sci Technol 25:255–264

    CAS  Google Scholar 

  • Jarrell KF, Kalmokoff ML (1988) Nutritional requirements of the methanogenic archaebacteria. Can J Microbiol 34:557–576

    CAS  Google Scholar 

  • Jeong HS, Kim YH, Yeom SH, Song BK, Lee SI (2005) Facilitated UASB granule formation using organic–inorganic hybrid polymers. Process Biochem 40:89–94

    CAS  Google Scholar 

  • Jia XS, Fang HHP, Furumai H (1996) Surface charge and extracellular polymer of sludge in the anaerobic degradation process. Water Sci Technol 34:309–316

    CAS  Google Scholar 

  • Kadam PC, Boone DR (1996) Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens. Appl Environ Microbiol 62:4486–4492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalogo Y, Seka AM, Verstraete W (2001) Enhancing the startup of a UASB reactor treating domestic wastewater by adding a water extract of Moringa oleifera seeds. Appl Microbiol Biotechnol 55:644–651

    CAS  PubMed  Google Scholar 

  • Kalyuzhnyi SV, Sklyar VI, Davlyatshina MA, Parshina SN, Simankova MV, Kostrikina NA, Nozhevnikova AN (1996) Organic removal and microbiological features of UASB-reactor under various organic loading rates. Bioresour Technol 55:47–54

    CAS  Google Scholar 

  • Kettunen RH, Rintala JA (1998) Performance of an on-site UASB reactor treating leachate at a low temperature. Water Res 32:537–546

    CAS  Google Scholar 

  • Kleerebezem R, Stams AJM (2000) Kinetics of syntrophic cultures: a theoretical treatise on butyrate fermentation. Biotechnol Bioeng 67:529–543

    CAS  PubMed  Google Scholar 

  • Kosaric N, Blaszczyk R, Orphan L (1990) Factors influencing formation and maintenance of granules in upflow anaerobic sludge blanket reactors (UASBR). Water Sci Technol 22:275–282

    CAS  Google Scholar 

  • Koster IW, Cramer A (1987) Inhibition of methanogenesis from acetate in granular sludge by long-chain fatty acids. Appl Environ Microbiol 53:403–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koster IW, Lettinga G (1984) The influence of ammonium-nitrogen on the specific activity of palletized methanogenic sludge. Agric Wastes 9:205–216

    CAS  Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10:137–142

    CAS  Google Scholar 

  • Langerak van EPA, Ramaekers H, Wiechers J, Veeken AHM, Hamelers HVM, Lettinga G (2000) Impact of location of CaCO3 precipitation on the development of intact anaerobic sludge. Water Res 34:437–446

    Google Scholar 

  • Lau IWC, Fang HHP (1997) Effect of temperature shock to thermophilic granules. Water Res 31:2626–2632

    CAS  Google Scholar 

  • Lawrence AW, McCarty PL (1965) The role of sulfide in preventing heavy metal toxicity on anaerobic treatment. J Water Pollut Control Fed 37:392–406

    CAS  Google Scholar 

  • Lay JJ, Li YY, Noike T (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31:1518–1524

    CAS  Google Scholar 

  • Lens P, de Beer D, Cronenberg C, Ottengraf S, Verstraete W (1995) The use of microsensors to determine population distributions in UASB aggregates. Water Sci Technol 31:273–280

    CAS  Google Scholar 

  • Lettinga G, Hulshoff Pol LW (1991) UASB—process design for various types of wastewaters. Water Sci Technol 24:87–107

    CAS  Google Scholar 

  • Lettinga G, Van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment especially, for anaerobic treatment. Biotechnol Bioeng 22:699–734

    CAS  Google Scholar 

  • Lettinga G, De Man A, Van der Last ARM, Wiegant W, Van Knippenberg K, Frijns J, Van Buuren JCL (1993) Anaerobic treatment of domestic sewage and wastewater. Water Sci Technol 27:67–73

    CAS  Google Scholar 

  • Lin CY (1992) Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion. Water Res 26:177–183

    CAS  Google Scholar 

  • Lin CY (1993) Effect of heavy metal on acidogenesis in anaerobic digestion. Water Res 27:147–152

    CAS  Google Scholar 

  • Lin CY, Chen CC (1999) Effect of heavy metals on the methanogenic UASB granule. Water Res 33:409–416

    CAS  Google Scholar 

  • Lin KC, Yang Z (1991) Technical review on the UASB process. Int J Environ Stud 39:203–222

    CAS  Google Scholar 

  • Liu Y, Xu HL, Yang SF, Tay JH (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37:661–673

    CAS  PubMed  Google Scholar 

  • Macario AJL, Visser FA, Van Lier JB, De Macario EC (1991) Topography of methanogenic subpopulations in a microbial consortium adapting to thermophilic conditions. J Gen Microbiol 137:2179–2189

    Google Scholar 

  • MacLeod FA, Guiot SR, Costerton JW (1990) Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56:1598–1607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud N, Zeeman G, Gijzen H, Lettinga G (2003) Solids removal in upflow anaerobic reactors, a review. Bioresour Technol 90:1–9

    CAS  PubMed  Google Scholar 

  • Mergaert K, Vanderhaegen B, Verstraete W (1992) Applicability and trends of anaerobic pre-treatment of municipal wastewater. Water Res 26:1025–1033

    CAS  Google Scholar 

  • Morgan JW, Forster CF, Evison LM (1990) A comparative study of the nature of biopolymers extracted from anaerobic and activated sludge. Water Res 24:743–750

    CAS  Google Scholar 

  • Morgan JW, Evison LM, Forster CF (1991) Changes to the microbiological ecology in anaerobic digesters treating ice cream wastewater during start-up. Water Res 25:639–653

    CAS  Google Scholar 

  • Mosey FE (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci Technol 15:209–232

    CAS  Google Scholar 

  • Mueller RF, Steiner A (1992) Inhibition of anaerobic digestion caused by heavy metals. Water Sci Technol 26:835–846

    CAS  Google Scholar 

  • Myburg C, Britz TJ (1993) Influence of higher organic loading rates on the efficiency of an anaerobic hybrid digester while treating landfill leachate. Water SA 19:319–324

    CAS  Google Scholar 

  • Oleszkiewicz JA, Sharma VK (1990) Stimulation and inhibition of anaerobic processes by heavy metals— a review. Biol Wastes 31:45–67

    CAS  Google Scholar 

  • Ozturk I, Eroglu V, Ubay G, Demir I (1993) Hybrid upflow anaerobic sludge blanket reactor (HUASB) treatment of dairy effluents. Water Sci Technol 28:77–85

    CAS  Google Scholar 

  • Palns SS, Loewenthal RE, Dold PL, Marais GR (1987) Hypothesis for pelletisation in upflow anaerobic sludge blanket reactor. Water SA 13:69–80

    CAS  Google Scholar 

  • Pereboom JHF (1994) Size distribution model for methanogenic granules from full scale UASB and IC reactors. Water Sci Technol 30:211–221

    CAS  Google Scholar 

  • Pereboom JHF, Vereijken TLFM (1994) Methanogenic granule development in full scale internal circulation reactors. Water Sci Technol 30:9–21

    CAS  Google Scholar 

  • Petruy R, Lettinga G (1997) Digestion of a milk-fat emulsion. Bioresour Technol 61:144–149

    Google Scholar 

  • Quarmby J, Forster CF (1995) An examination of the structure of UASB granules. Water Res 29:2449–2454

    CAS  Google Scholar 

  • Rinzema A, Boone M, van Knippenberg K, Lettinga G (1994) Bactericidal effect of long chain fatty acids in anaerobic digestion. Water Environ Res 66:40–49

    CAS  Google Scholar 

  • Ross WR (1984) The phenomenon of sludge pelletisation in anaerobic treatment of a maize processing waste. Water SA 10:197–204

    CAS  Google Scholar 

  • Rudd T, Sterritt RM, Lester JN (1984) Complexation of heavy metals by extracellular polymers in the activated sludge process. J Water Pollut Control Fed 56:1260–1268

    CAS  Google Scholar 

  • Sayed S, Van der Zanden J, Wijffels R, Lettinga G (1988) Anaerobic degradation of various fractions of slaughterhouse wastewater. Biol Wastes 23:117–142

    CAS  Google Scholar 

  • Schmidt JE, Ahring BK (1994) Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl Microbiol Biotechnol 42:457–462

    CAS  Google Scholar 

  • Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246

    CAS  PubMed  Google Scholar 

  • Seghezzo L, Zeeman G, van Lier JB, Hamelers HVM, Lettinga G (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65:175–190

    CAS  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermopilic sludge granules. Appl Environ Microbiol 65:1280–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shayegan J, Ghavipanjeh F, Mirjafari P (2005) The effect of influent COD and upward flow velocity on the behavior of sulphate-reducing bacteria. Process Biochem 40:2305–2310

    CAS  Google Scholar 

  • Shen CF, Kosaric N, Blaszczyk R (1993) The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their exracellular polymeric substances (EPS). Water Res 27:25–33

    CAS  Google Scholar 

  • Show KY, Wang Y, Foong SF, Tay JHJ (2004) Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res 38:2293–2304

    CAS  Google Scholar 

  • Singh KS, Viraraghavan T (2003) Impact of temperature on performance, microbiological, and hydrodynamic aspects of UASB reactors treating municipal wastewater. Water Sci Technol 48:211–217

    CAS  PubMed  Google Scholar 

  • Singh RP, Kumar S, Ojha CSP (1999) Nutrient requirement for UASB process: a review. Biochem Eng J 3:35–54

    Google Scholar 

  • Speece RE (1983) Anaerobic biotechnology for industrial wastewater treatment. Environ Sci Technol 17:416A–427A

    CAS  PubMed  Google Scholar 

  • Syutsubo K, Harada H, Ohashi A, Suzuki H (1997) An effective start-up of thermophilic UASB reactor by seeding mesophilically-grown granular sludge. Water Sci Technol 24:35–59

    Google Scholar 

  • Tay JH, Yan YG (1996) Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Water Environ Res 68:1140–1150

    CAS  Google Scholar 

  • Teer JE, Leak DJ, Dudeney AWL, Nayaranan A, Stuckey DC (2000) Changes in pre-formed granule composition and structure in sulphidogenic UASB treating a synthetic ferric oxalate wastewater. Environ Technol 21:1325–1335

    CAS  Google Scholar 

  • Tiwari MK, Guha S, Harendranath CS (2004) Enhanced granulation in UASB reactor treating low-strength wastewater by natural polymers. Water Sci Technol 50:235–240

    CAS  PubMed  Google Scholar 

  • Tiwari MK, Guha S, Harendranath CS, Tripathi S (2005) Enhanced granulation by natural ionic polymer additives in UASB reactor treating low-strength wastewater. Water Res 39:3801–3810

    CAS  PubMed  Google Scholar 

  • Torkian A, Eqbali A, Hashemian SJ (2003) The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resour Conserv Recycl 40:1–11

    Google Scholar 

  • Turakhia MH, Characklis WG (1988) Activity of Pseudomonas aeruginosa in biofilm: effect of calcium. Biotechnol Bioeng 33:406–414

    Google Scholar 

  • Uemura S, Harada H (2000) Treatment of sewage by a UASB reactor under moderate to low temperature conditions. Bioresour Technol 72:275–282

    CAS  Google Scholar 

  • Van der Last ARM, Lettinga G (1992) Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Wat Sci Technol 25:167–178

    Google Scholar 

  • Van Lier JB, Rintala J, Sanz Martin JL, Lettinga G (1990) Effect of short-term temperature increase on the performance of a mesophilic UASB reactor. Water Sci Technol 22:183–190

    Google Scholar 

  • Van Lier JB, Sanz Martin JL, Lettinga G (1995) Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Water Res 30:199–207

    Google Scholar 

  • Van Velsen AFM (1979) Adaptation of methanogenic sludge to high ammonia-nitrogen concentrations. Water Res 13:995–999

    Google Scholar 

  • Veeresh GS, Kumar P, Mehrotra I (2005) Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Res 39:154–170

    CAS  PubMed  Google Scholar 

  • Verrier D, Mortier B, Dubourguier HC, Albagnac G (1988) Adhesion of anaerobic bacteria to inert supports and development of methanogenic biofilms. In: Hall ER, Hobson PN (eds) Anaerobic digestion. Pergamon, Oxford, pp 61–70

    Google Scholar 

  • Wiegant WM, Lettinga G (1985) Thermophilic anaerobic digestion of sugars in upflow anaerobic sludge blanket reactors. Biotechnol Bioeng 27:1603–1607

    CAS  PubMed  Google Scholar 

  • Wiegant WM, Zeeman G (1986) The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes. Agric Wastes 16:243–253

    CAS  Google Scholar 

  • Yu HQ, Fang HHP, Tay JH (2000) Effect of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactor. Water Sci Technol 41:199–205

    CAS  Google Scholar 

  • Yu HQ, Tay JH, Fang HHP (2001a) The roles of calcium in sludge granulation during UASB reactor start-up. Water Res 35:1052–1060

    CAS  PubMed  Google Scholar 

  • Yu HQ, Fang HHP, Tay JH (2001b) Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere 44:31–36

    CAS  PubMed  Google Scholar 

  • Zinder SH (1990) Conversion of acetic acid to methane by thermophiles. FEMS Microbiol Rev 75:125–138

    CAS  Google Scholar 

  • Zinder SH, Anguish T, Cardwell SC (1984) Effects of temperature on methanogenesis in a thermophilic (58 °C) anaerobic digester. Appl Environ Microbiol 47:808–813

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the sponsorship of this research provided by Swedish International Development Co-operation Agency (SIDA) through Asian Regional Research Program on Environmental Technology (ARRPET) coordinated by Asian Institute of Technology (AIT), Bangkok.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumyen Guha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, M.K., Guha, S., Harendranath, C.S. et al. Influence of extrinsic factors on granulation in UASB reactor. Appl Microbiol Biotechnol 71, 145–154 (2006). https://doi.org/10.1007/s00253-006-0397-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0397-3

Keywords

Navigation