Skip to main content
Log in

Microbial enzymes involved in lactone compound metabolism and their biotechnological applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactone compounds are widely distributed in nature and play important roles in organisms. These compounds are synthesized and metabolized enzymatically in vivo; however, detailed investigation of these enzymes lags behind that of other common enzymes. In this paper, recent work on the enzymes involved in the metabolism of lactone compounds will be reviewed. In particular, fundamental and application studies on lactonases and Baeyer-Villiger monooxgenases of microbial origin are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldridge WN (1953) Serum esterases I. Biochem J 53:110–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alphand V, Carrea G, Wohlgemuth R, Furstoss R, Woodley JM (2003) Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol 21:318–323

    CAS  PubMed  Google Scholar 

  • Bantleon R, Altenbuchner J, van Pèe K-H (1994) Chloroperoxidase from Streptomyces lividans: isolation and characterization of the enzyme and the corresponding gene. J Bacteriol 176:2339–2347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett AP, Strang EJ, Trudgill PE, Wong VTK (1988) Purification and properties of ɛ-caprolactone hydrolases from Acinetobacter NCIB 9871 and Nocardia globerula CL1. J Gen Microbiol 134:161–168

    CAS  Google Scholar 

  • Bernhardt P, Hult K, Kazlauskas RJ (2005) Molecular basis of perhydrolase activity in serine hydrolases. Angew Chem Int Ed 44:2742–2746

    CAS  Google Scholar 

  • Billecke S, Draganov D, Counsell R, Stetson P, Watson C, Hsu C, La Du BN (2000) Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab Dispos 28:1335–1342

    CAS  PubMed  Google Scholar 

  • Bublitz C, Lehninger A (1961) The role of aldonolactonase in the conversion of l-gulonate to l-ascorbate. Biochim Biophys Acta 47:288–297

    CAS  Google Scholar 

  • Chen YCJ, Peoples OP, Walsh CT (1988) Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination. J Bacteriol 170:781–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Thomas SM, Kostichka K, Valentine JR, Nagarajan V (2000) Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J Bacteriol 182:4744–4751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi KD, Jeohn GH, Rhee JS Yoo OJ (1990) Cloning and nucleotide sequence of an esterase gene from Pseudomonas fluorescens and expression of the gene in Escherichia coli. Agric Biol Chem 54:2039–2045

    CAS  PubMed  Google Scholar 

  • Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A 101:3587–3590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong CE (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14:334–336

    CAS  PubMed  Google Scholar 

  • De Schrijver A, Nagy I, Schoofs G, Proost P, Vanderleyden J, van Pèe KH, De Mot R (1997) Thiocarbamate herbicide-inducible nonheme haloperoxidase of Rhodococcus erythropolis NI86/21. Appl Environ Microbiol 63:1911–1916

    PubMed  PubMed Central  Google Scholar 

  • Doig SD, Avenell PJ, Bird PA, Gallati P, Lander KS, Lye GJ, Wohlgemuth R, Woodley JM (2002) Reactor operation and scale-up of whole cell Baeyer-Villiger catalyzed lactone synthesis. Biotechnol Prog 18:1039–1046

    CAS  PubMed  Google Scholar 

  • Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109

    CAS  PubMed  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    CAS  PubMed  Google Scholar 

  • Donoghue NA, Trudgill PW (1975) The metabolism of cyclohexanol by Acinetobacter NCIB 9871. Eur J Biochem 60:1–7

    CAS  PubMed  Google Scholar 

  • Draganov DI, La Du BN (2004) Pharmacogenetics of paraoxonases: a brief review. Naunyn Schmiedeberg’s Arch Pharmacol 369:78–88

    CAS  Google Scholar 

  • Draganov DI, Stetson PL, Watson CE, Billecke SS, La Du BN (2000) Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation. J Biol Chem 275:33435–33442

    CAS  PubMed  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    CAS  PubMed  Google Scholar 

  • Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RBG, MaCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419

    CAS  PubMed  Google Scholar 

  • Hofmann B, Tölzer S, Pelletier J, Altenbuchner KH, van Pèe KH, Hecht HJ (1998) Structural investigation of the cofactor-free chloroperoxidases. J Mol Biol 279:889–900

    CAS  PubMed  Google Scholar 

  • Honda K, Kataoka M, Shimizu S (2002) Enzymatic preparation of d-β-acetylthioisobutyric acid and cetraxate hydrochloride using a stereo- and/or regioselective hydrolase, 3,4-dihydrocoumarin hydrolase from Acinetobacter calcoaceticus. Appl Microbiol Biotechnol 60:288–292

    CAS  PubMed  Google Scholar 

  • Honda K, Kataoka M, Sakuradani E, Shimizu S (2003a) Role of Acinetobactercalcoaceticus 3,4-dihydrocoumarin hydrolase in oxidative stress defence against peroxoacids. Eur J Biochem 270:486–494

    CAS  PubMed  Google Scholar 

  • Honda K, Sakamoto K, Kita S, Kataoka M, Shimizu S (2003b) Biocatalytic deprotection of a cetraxate ester by Microbacterium sp. strain 7-1W cells. Biosci Biotechnol Biochem 67:192–194

    CAS  PubMed  Google Scholar 

  • Honda K, Tsuboi H, Minetoki T, Nose H, Sakamoto K, Kataoka M, Shimizu S (2005) Expression of the Fusarium oxysporum lactonase gene in Aspergillus oryzae: molecular properties of the recombinant enzyme and its application. Appl Microbiol Biotechnol 66:520–526

    CAS  PubMed  Google Scholar 

  • Horinouchi S, Beppu T (1994) A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol Microbiol 12:859–864

    CAS  PubMed  Google Scholar 

  • Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995a) Optical resolution of racemic pantolactone with a novel fungal enzyme, lactonohydrolase. Appl Microbiol Biotechnol 43:974–977

    CAS  Google Scholar 

  • Kataoka M, Shimizu K, Sakamoto K, Yamada H, Shimizu S (1995b) Lactonohydrolase-catalyzed optical resolution of pantoyl lactone: selection of a potent producer and optimization of culture and reaction conditions for practical resolution. Appl Microbiol Biotechnol 44:333–338

    CAS  Google Scholar 

  • Kataoka M, Hirakata M, Sakamoto K, Yamada H, Shimizu S (1996) Optical resolution of racemic pantoic acid through microbial stereoselective lactonization in an organic solvent/water two-phase system. Enzyme Microb Technol 19:307–310

    CAS  Google Scholar 

  • Kataoka M, Honda K, Shimizu S (2000a) 3,4-Dihydrocoumarin hydrolase with haloperoxidase activity from Acinetobacter calcoaceticus F46. Eur J Biochem 267:3–10

    CAS  PubMed  Google Scholar 

  • Kataoka M, Nomura J, Nose K, Shinohara M, Shimizu S (2000b) Purification and characterization of a novel lactonohydrolase from Agrobacterium tumefaciens. Biosci Biotechnol Biochem 64:1255–1262

    CAS  PubMed  Google Scholar 

  • Kataoka M, Kita K, Wada M, Yasohara Y, Hasegawa J, Shimizu S (2003) Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol 62:437–445

    CAS  PubMed  Google Scholar 

  • Kesseler M, Friedrich, T, Höffken HW, Hauer B (2002) Development of a novel biocatalyst for the resolution of rac-pantolactone. Adv Synth Catal 344:1103–1110

    CAS  Google Scholar 

  • Khalameyzer V, Fischer I, Bornscheuer UT, Altenbuchner J (1999) Screening, nucleotide sequence, and biological characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl Environ Microbiol 65:477–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khersonsky O, Tawfik DS (2005) Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry 44:6371–6382

    CAS  PubMed  Google Scholar 

  • Kim MH, Choi WC, Kang HO, Lee JS, Kang BS, Kim KJ, Derewenda ZS, Oh TK, Lee CH, Lee JK (2005) The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-l-homoserine lactone hydrolase. Proc Natl Acad Sci U S A 102:17606–17611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk O, Conrad LS (1999) Metal-free haloperoxidases: fact or artifact? Angew Chem Int Ed Engl 38:977–979

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Shinohara M, Sakoh C, Kataoka M, Shimizu S (1998) Lactone-ring-cleaving enzyme: genetic analysis, RNA editing, and evolutionary implications. Proc Natl Acad Sci U S A 95:12787–12792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CL, La Du BN (1998) Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity. Drug Metab Dispos 26:653–660

    CAS  PubMed  Google Scholar 

  • Kuroda H, Miyadera A, Imura A, Suzuki A (1989) Partial purification, and some properties and reactivities of cetraxate benzyl ester hydrochloride hydrolyzing enzyme. Chem Pharm Bull 37:2929–2932

    CAS  Google Scholar 

  • La Du BN (1992) Human serum paraoxonase/arylesterase. In: Kalow W (ed) Genetic factors influencing the metabolism of foreign compounds (international encyclopedia of pharmacology and therapeutics). Pergamon, New York, pp 51–91

    Google Scholar 

  • Liu D, Lepore BW, Petsko GA, Thomas PW, Stone EM, Fast W, Ringe D (2005) Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc Natl Acad Sci U S A 102:11881–11887

    Google Scholar 

  • Lomovdkaya N, Doi-Katayama Y, Filippini S, Nastro C, Fonstein L, Gallo M, Colombo AL, Hutchinson CR (1998) The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. J Bacteriol 180:2379–2386

    Google Scholar 

  • Mihovilovic MD, Rudroff F, Grötzl B, Kapitan P, Snajdrova R, Rydz J, Mach R (2005) Family clustering of Baeyer-Villiger monooxygenases based on protein sequence and stereopreference. Angew Chem Int Ed 44:3609–3613

    CAS  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    CAS  PubMed  Google Scholar 

  • Onakunle OA, Knowles CJ, Buch AW (1997) The formation and substrate specificity of bacterial lactonases capable of enantioselective resolution of racemic lactones. Enzyme Microb Technol 21:245–251

    CAS  Google Scholar 

  • Ondetti MA, Cushman DW (1981) Inhibition of the renin-angiotensin system. A new approach to the therapy of hypertension. J Med Chem 24:355–361

    CAS  PubMed  Google Scholar 

  • Ottolina G, de Gonzolo G, Carrea G, Danieli B (2005) Enzymatic Baeyer-Villiger oxidation of bicyclic diketones. Adv Synth Catal 347:1035–1040

    CAS  Google Scholar 

  • Ozaki E, Sakimae A, Numazawa R (1995) Nucleotide sequence of the gene for a thermostable esterase from Pseudomonas putida MR-2068. Biosci Biotechnol Biochem 59:1204–1207

    CAS  PubMed  Google Scholar 

  • Ozer EA, Pezzulo A, Shih D, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J (2005) Human and murine paraoxonase 1 are host modulators of Pseudomonasaeruginosa quorum-sensing. FEMS Microbiol Lett 253:29–37

    CAS  PubMed  Google Scholar 

  • Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91:197–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier I, Altenbuchner J (1995) A bacterial esterase is homologous with non-haem haloperoxidases and displays brominating activity. Microbiology 141:459–468

    CAS  PubMed  Google Scholar 

  • Pelletier I, Pfeifer O, Altenbuchner J, van Pèe KH (1994) Cloning of a second non-haem bromoperoxidase gene from Streptomyces sureofaciens ATCC 10762: sequence analysis, expression in Streptomyces lividens and enzyme purification. Microbiology 140:509–516

    CAS  PubMed  Google Scholar 

  • Pfeifer O, Pelletier I, Altenbuchner J, van Pèe KH (1992) Molecular cloning and sequencing of a non-haem bromoperoxidase gene from Streptomyces aureofaciens ATCC 10762. J Gen Microbiol 138:1123–1131

    CAS  PubMed  Google Scholar 

  • Prado L, Lombo F, Brana AF, Mendez C, Rohr J, Salas JA (1999) Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus. Mol Gen Genet 261:216–225

    CAS  PubMed  Google Scholar 

  • Roberts SM, Wan PWH (1998) Enzyme-catalyzed Baeyer-Villiger oxidations. J Mol Catal B Enzym 4:111–136

    CAS  Google Scholar 

  • Sakamoto K, Honda, K, Wada K, Kita S, Tsuzaki K, Nose H, Kataoka M, Shimizu S (2005) Practical resolution system for dl-pantoyl lactone using the lactonase from Fusarium oxysporum. J Biotechnol 118:99–106

    CAS  PubMed  Google Scholar 

  • Sakimae A, Hosoi A, Kobayashi E, Ohsuga N, Numazawa R, Watanabe I, Ohnishi H (1992) Screening of microorganisms producing d-β-acetylthioisobutyric acid from methyl dl-β-acetylthioisobutyrate. Biosci Biotechnol Biochem 56:1252–1256

    CAS  Google Scholar 

  • Sakimae A, Ozaki E, Toyama H, Ohsuga N, Numazawa R, Muraoka I, Hamada E, Ohnishi H (1993) Process conditions for the production of d-β-acetylthioisobutyric acid from methyl dl-β-acetylthioisobutyrate with the cells of Pseudomonas putida MR-2068. Biosci Biotechnol Biochem 57:782–786

    CAS  Google Scholar 

  • Shimazaki M, Hasegawa J, Kan K, Nomura K, Nose Y, Kondo H, Ohashi T, Watanabe K (1982) Synthesis of captopril starting from an optically active β-hydroxyisobutyric acid. Chem Pharm Bull 30:3139–3146

    CAS  Google Scholar 

  • Shimizu S (2001) Vitamins and related compounds: microbial production. In: Reed G, Rehm HJ (eds) Biotechnology, vol 10. VCH, Weinheim, pp 320–340

    Google Scholar 

  • Shimizu S, Kataoka M (1999) Pantothenic acid and related compounds. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, pp 1923–1934

  • Shimizu S, Kataoka M, Shimizu K, Hirakata M, Sakamoto K, Yamada H (1992) Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones, from Fusarium oxysporum. Purification and characterization. Eur J Biochem 209:383–390

    CAS  PubMed  Google Scholar 

  • Teiber JFT, Draganov DI, La Du BN (2003) Lactonase and lactonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. Biochem Pharmacol 66:887–896

    CAS  PubMed  Google Scholar 

  • van Pèe KH (1996) Biosynthesis of halogenated metabolites by bacteria. Annu Rev Microbiol 50:375–399

    PubMed  Google Scholar 

  • Wang LH, Weng LX, Dong YH, Zhang LH (2004) Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem 279:13645–13651

    CAS  PubMed  Google Scholar 

  • Wolffram C, Lingens F, Mutzel R, van Pèe KH (1994) Chloroperoxidase-encoding gene from Pseudomonas pyrrocinica: sequence, expression in heterologous hosts, and purification of the enzyme. Gene 130:131–135

    Google Scholar 

  • Zhang L, Murphy PJ, Kerr A, Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362:446–447

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science. This work was also carried out as part of the Project for “Development of a Technological Infrastructure for Industrial Bioprocesses on R&D of New Industrial Science and Technology Frontiers” of the Ministry of Economy, Trade & Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO, to SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakayu Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataoka, M., Honda, K., Sakamoto, K. et al. Microbial enzymes involved in lactone compound metabolism and their biotechnological applications. Appl Microbiol Biotechnol 75, 257–266 (2007). https://doi.org/10.1007/s00253-007-0896-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0896-x

Keywords

Navigation