Skip to main content
Log in

Microbial tannases: advances and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the last years, tannase has been the subject of a lot of studies due to its commercial importance and complexity as catalytic molecule. Tannases are capable of hydrolyzing complex tannins, which represent the main chemical group of natural anti-microbials occurring in the plants. The general outline of this work includes information of the substrates, the enzyme, and the applications. This review considers in its introduction the concepts and history of tannase and explores scientific and technological aspects. The “advances” trace the route from the general, molecular, catalytic, and functional information obtained under close to optimal conditions for microbial production through purification, description of the enzyme properties, and the commercial applications to the “perspectives” including expression studies, regulation, and potential uses; aspects related to the progress in our understanding of tannin biodegradation are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Naby MA, Sherif AA, El-Tanash AB, Mankarios AT (1999) Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. J Appl Microbiol 87:108–114

    CAS  Google Scholar 

  • Adachi O, Watanabe M, Yamada H (1971) Physicochemical properties of the tannase from Aspergillus flavus. Agric Biol Chem 32:1079–1085

    Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001a) Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Proc Biochem 36:565–570

    CAS  Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001b) Production of tannase by Aspergillus niger Aa-20 in submerged and solid state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    CAS  PubMed  Google Scholar 

  • Aguilar CN, Augur C, Viniegra-González G, Favela-Torres E (1999) A comparison of methods to determine tannin acyl hydrolase activity. Braz Arch Biol Technol 42:355–361

    CAS  Google Scholar 

  • Aguilar CN, Favela-Torres E, Viniegra-González G, Augur C (2002) Culture conditions dictate protease and tannase production in submerged and solid-state cultures by Aspergillus niger Aa-20. Appl Biochem Biotechnol 102–103:407–414

    PubMed  Google Scholar 

  • Aguilar CN, Gutiérrez-Sánchez G (2001) Review sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7:373–382

    CAS  Google Scholar 

  • Albertse EK (2002) Cloning, expression and characterization of tannase from Aspergillus species. M.Sc. thesis, Faculty of Natural and Agricultural Sciences, Department of Microbiology and Biotechnology, University of the Free State Bloemfontein, South Africa

  • Aoki K, Shinke R, Nishira H (1976) Purification and some properties of yeast tannase. Agric Biol Chem 40:79–85

    CAS  Google Scholar 

  • Ayed L, Hamdi M (2002) Culture conditions of tannase production by Lactobacillus plantarum. Biotechnol Lett 24:1763–1765

    CAS  Google Scholar 

  • Bajpai B, Patil S (1997) Introduction of tannin acyl hydrolase (EC 3.1.1.20) activity in some members of fungi imperfecti. Enzyme Microb Technol 20:612–614

    CAS  Google Scholar 

  • Banerjee D, Mondal K, Bikas R (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF9. J Basic Microbiol 6:313–318

    Google Scholar 

  • Banerjee R, Mukherjee G, Patra KC (2005) Microbial transformation of tannin-rich substrate to gallic acid through co-culture method. Bioresour Technol 96:949–953

    CAS  PubMed  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of tannase from Aspergillus niger LCF8. J Ferment Technol 77:137–142

    Google Scholar 

  • Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Proc Biochem 40:1553–1557

    CAS  Google Scholar 

  • Battestin V, Alves-Macedo G (2007) Tannase production by Paecilomyces variotii. Bioresour Technol 98:1832–1837

    CAS  PubMed  Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodríguez-Herrera R, Ramírez Coronel A, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. Lebensm Wiss Technol 37:857–864

    CAS  Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins. A current perspective. Biodegradation 9:343–357

    CAS  PubMed  Google Scholar 

  • Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol 28:590–595

    CAS  PubMed  Google Scholar 

  • Bradoo S, Gupta R, Saxena RK (1997) Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Proc Biochem 32:135–139

    Google Scholar 

  • Bradoo S, Gupta R, Saxena R (1996) Screening of extracellular tannase producing fungi: development of a rapid simple plate assay. J Gen Appl Microbiol 42:325–329

    CAS  Google Scholar 

  • Cerda-Gomez A, Contreras-Esquivel JC, Reyes-Valdes H, Rodríguez R, Aguilar CN (2006) Molecular characterization of Aspergillus strains producers of tannase. Proceedings of the second international congress on food science and technology in developing countries, Saltillo, Coahuila, Mexico (FEMB-18)

  • Chae S, Yu T (1983) Experimental manufacture of a com wine by fungal tannase. Hanguk Sipkum Kwahakoechi 15:326–332

    CAS  Google Scholar 

  • Chang FS, Chen PC, Chen RC, Lu FM, Cheng TJ (2006) Real-time assay of immobilized tannase with a stopped-flow conductometric device. Bioelectrochemistry 69:113–116

    CAS  PubMed  Google Scholar 

  • Chaterjee R, Dutta A, Banerjee R, Bhattacharyya BC (1996) Production of tannase by solid state fermentation. Bioprocess Eng 14:159–162

    Google Scholar 

  • Coggon P, Graham NH, Sanderson GW (1975) UK Patent 1,380,135

  • Contreras-Dominguez M, Guyot S, Marnet N, Le Petit J, Perraud-Gaime I, Roussos S, Augur C (2006) Degradation of procyanidins by Aspergillus fumigatus: identification of a a novel aromatic ring cleavage product. Biochimie 88:1899–1908

    CAS  PubMed  Google Scholar 

  • Cruz-Hernández M, Augur C, Rodríguez R, Contreras-Esquivel J, Aguilar CN (2006) Evaluation of culture conditions for tannase production by Aspergillus niger GH1. Food Technol Biotechnol 44:541–544

    Google Scholar 

  • Deschamps AM, Otuk G, Lebeault JM (1983) Production of tannase and degradation of chestnut tannin by bacteria. J Ferment Technol 61:55–59

    CAS  Google Scholar 

  • Dueñas M, Hernández T, Estrella I (2007) Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem 101:90–97

    Google Scholar 

  • Farias GM, Gorbea C, Elkins JR, Griffin GJ (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol Mol Plant Pathol 44:51–63

    CAS  Google Scholar 

  • Gaathon A, Gross Z, Rozhanski M (1989) Propyl gallate: enzymatic synthesis in a reverse micelle system. Enzyme Microb Technol 11:604–609

    CAS  Google Scholar 

  • Gammoun A, Moros J, Tahiri S, Garriques S, Guardia M (2006) Partial least-squares near-infrared determination of hydrocarbons removed from polluted waters by tanned solid wastes. Anal Bioanal Chem 385:766–770

    CAS  PubMed  Google Scholar 

  • Ganga PS, Nandy SC, Santappa M (1977) Effect of environmental factors on the production of fungal tannase. Leather Sci 24:8–16

    CAS  Google Scholar 

  • García-Conesa MT, Ostergaard P, Kauppinen S, Williamson G (2001) Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae. Carbohydr Polym 44:319–324

    Google Scholar 

  • García-Nájera JA, Contreras-Esquivel JC, Rodríguez-Herrera R, Prado-Barragan LA, Aguilar CN (2002) Fungal production of 3,4,5-trihydroxybenzoic acid in submerged culture (in Spanish). Proceedings of the third international symposium on bioprocess engineering, IBT-UNAM, Cuernavaca, Morelos, Mexico

  • García-Peña I (1996) Production and characterization of a tannase produced by Aspergillus níger in solid state culture (in Spanish). M.Sc. thesis, Universidad Autónoma Metropolitana, Iztapalapa, Mexico

  • García-Peña I, Augur C, Favela-Torres E (1999) Partial purification of Aspergillus niger tannase produced by solid state culture (in Spanish). In: Prado A, Huerta S, Rodríguez G, Sancedo G (eds) Advances in enzyme purification and applied biotechnology. Ediciones UAM-Iztapalapa, Mexico, DF, pp 247–261, 2207–2212

    Google Scholar 

  • Goel G, Puniya AK, Aguilar CN, Singh K. (2005) Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92:497–503

    CAS  PubMed  Google Scholar 

  • Goel G, Puniya AK, Singh K (2007) Phenotypic characterization of tannin–protein complex degrading bacteria from faeces of goat. Small Rumin Res 69:217–220

    Google Scholar 

  • Hadi TA, Banerjee R, Bhattarcharyya BC (1994) Optimization of tannase biosynthesis by a newly isolated Rhizopus oryzae. Bioprocess Eng 11:239–243

    CAS  Google Scholar 

  • Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175:215–221

    CAS  PubMed  Google Scholar 

  • Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1997) Erratum to: ‘cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae’ [Gene 175 (1996) 215–221]. Gene 186:1–153

    Google Scholar 

  • Huang W, Ni J, Borthwick AGL (2005) Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6. Process Biochem 40:1245–1249

    CAS  Google Scholar 

  • Ibuchi S, Minoda Y, Yamada K (1972) Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase. Agric Biol Chem 32:803–809

    Google Scholar 

  • Kar B, Banerjee R (2000) Biosynthesis of tannin acyl hydrolase from tannin rich forest residue under different fermentation conditions. J Ind Microbiol Biotechnol 25:29–38

    CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2002) Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique. Process Biochem 37:1395–1401

    CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2003) Effect of additives on the behavioural properties of tannin acyl hydrolase. Process Biochem 38:1285–1293

    CAS  Google Scholar 

  • Kostinek M, Specht I, Edward VA, Pinto C, Egounlety M, Sossa C, Mbugua S, Dortu C, Thonart P, Taljaard L (2007) Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures. Int J Food Microbiol 114:342–351

    CAS  PubMed  Google Scholar 

  • Kumar R, Sharma J, Singh R (2006) Production of tannase from Aspergillus ruber under solid state fermentation using jamun (Syzygium cumini) leaves. Microbiol Res (in press).DOI https://doi.org/10.1016/J.micres.2006.06.012

    CAS  PubMed  Google Scholar 

  • Lee J, Talcott ST (2005) Enzyme hydrolysis of ellagic acid derivatives in muscadine grapes (Vitis rotundifolia). Session 36E, fruit and vegetable products: general. IFT annual meeting, July 15–20, New Orleans, La, USA

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260

    CAS  PubMed  Google Scholar 

  • Lekha P, Lonsane B (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochem 29:497–503

    CAS  Google Scholar 

  • Lekha P, Ramakrishna M, Lonsane B (1993) Strategies for isolation of potent culture capable of producing tannin acyl hydrolase in higher titres. Chem Mikrobiol Technol Lebensm 15:5–10

    CAS  Google Scholar 

  • Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci 107:235–241

    CAS  Google Scholar 

  • López-Ríos GF (1984) Fitoquímica, 1st edn. Universidad Autónoma de Chapingo, Estado de México, p 13

    Google Scholar 

  • Mahapatra K, Nanda RK, Bag SS, Banerjee R, Pandey A, Szakacs G (2005) Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. Process Biochem 40:3251–3254

    CAS  Google Scholar 

  • Mahendran B, Raman N, Kim D (2005) Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase. Appl Microbiol Biotechnol 70:445–451

    Google Scholar 

  • Mendez A (1984) Energía metabolizable del sorgo y efecto de la adición de aceite a dietas con sorgo dulce o amargo. Avances de investigación (resumenes), Colegio de Postgraduados

  • Mingshu L, Kai Y, Qiang H, Dongying J (2006) Biodegradation of gallotannins and ellagitannins. J Basic Microbiol 46:68–84

    Google Scholar 

  • Mondal K, Banerjee D, Banerjee R, Pati B (2001b) Production and characterization of tannase from Bacillus cereus KBR9. J Gen Appl Microbiol 47:263–267

    CAS  PubMed  Google Scholar 

  • Mondal K, Samanta S, Giri S, Pati B (2001a) Distribution of tannic acid degrading microorganisms in the soil and comparative study of tannase from two fungal strains. Acta Microbiol Pol 50:75–82

    CAS  PubMed  Google Scholar 

  • Mukherjee G, Banerjee R (2005) Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World J Microbiol Biotechnol 22:207–211

    Google Scholar 

  • Murugan K, Saravanababu S, Arunachalam M (2007) Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process. Bioresour Technol 98:946–949

    CAS  PubMed  Google Scholar 

  • Nip WK, Burns EE (1969) Pigment characterization in grain sorghum, I. Red varieties. Cereal Chem 46:490–495

    CAS  Google Scholar 

  • Nishitani Y, Osawa R (2003) A novel colorimetric method to quantify tannase activity of viable bacteria. J Microbiol Methods 54:281–284

    CAS  PubMed  Google Scholar 

  • Nishitani Y, Sasaki E, Fujisawa T, Osawa R (2004) Genotypic Analyses of Lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Syst Appl Microbiol 27:109–117

    CAS  PubMed  Google Scholar 

  • Nuero OM, Reyes F (2002) Enzymes for animal feeding from Penicillium chrysogenum mycelial wastes from penicillin manufacture. Lett App Microbiol 34:413–416

    CAS  Google Scholar 

  • Pinto G, Bruno L, Hamacher M, Tarzi S, Couri S (2003) Increase of tannase production in solid state fermentation by Aspergillus niger 3T5B8. 25th Symposium on biotechnology for fuels and chemicals, poster presentation, Breckenridge, CO, USA, pp 3–68

  • Pinto G, Couri S, Goncalves E (2006) Replacement of methanol by ethanol on gallic acid determination by rhodanine and its impacts on the tannase assay. EJEAFCHe 5:5. http://ejeafche.uvigo.es/5(5)2006/009552006F.htm

  • Pinto G, Leite S, Tarzi S, Couri S (2001) Selection of tannase-producing Aspergillus niger strains. Braz J Microbiol 32:24–26

    CAS  Google Scholar 

  • Pourrat H, Regerat F, Pourrat A, Jean D (1985) Production of gallic acid from tara tannin by a strain of A. niger. J Ferment Technol 63:401–403

    Google Scholar 

  • Purohit JS, Dutta JR, Nanda RK, Banerjee R (2006) Strain improvement for tannase production from coculture of Aspergillus foetidus and Rhizopus oryzae. Bioresour Technol 97:795–801

    CAS  PubMed  Google Scholar 

  • Raab T, Bel-Rhlid R, Williamson G, Hansen CE, Chaillot D (2007) Enzymatic galloylation of catechins in room temperature ionic liquids. J Mol Catal B Enzym 44:60–65

    CAS  Google Scholar 

  • Rajkumar GS, Nandy SC (1983) Isolation purification and some properties of Penicillium chrysogenum tannase. Appl Environ Microbiol 46:525–527

    Google Scholar 

  • Ramirez-Coronel A, Marnet N, Kumar V, Rousses S, Guyot S, Augur C (2004) Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea arabica) by thiolysis-high-performance liquid chromatography. J Agric Food Chem 52:1344–1349

    CAS  PubMed  Google Scholar 

  • Ramírez-Coronel A, Viniegra-González G, Augur C (1999) Purification of a tannase produced by Aspergillus niger Aa-20, in solid state fermentation. Proceedings of the VIII Mexican congress and IV Latin American congress of biotechnology and bioengineering, Huatulco, Oaxaca, Mexico

  • Ramirez-Coronel MA, Viniegra-Gonzalez G, Darvill A, Augur C (2003) A novel tannase from Aspergillus niger with β-glucosidase activity. Microbiology 149:2941–2946

    CAS  PubMed  Google Scholar 

  • Rana N, Bhat T (2005) Effect of fermentation system on the production and properties of tannase of Aspergillus niger van Tieghem MTCC 2425. J Gen Appl Microbiol 51:203–212

    CAS  PubMed  Google Scholar 

  • Rout S, Banerjee R (2006) Production of tannase under mSSF and its application in fruit juice debittering. Ind J Biotechnol 5:351–356

    Google Scholar 

  • Saavedra G, Couri S, Ferreira S, Sousa de Brito E (2005) Tannase: conceitos, producto e aplicacao (in Portuguese). B.CEPPA Curitiba 23:435–462

    Google Scholar 

  • Sabu A, Pandey A, Jaafar Daud M, Szakacs G (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour Technol 96:1223–1228

    CAS  PubMed  Google Scholar 

  • Sabu A, Augur C, Swati C, Pandey A (2006) Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochem 41:575–580

    CAS  Google Scholar 

  • Sanchez EE (2001) Applications and potential uses of tannase and tannins (in Spanish). B.Sc. thesis, Universidad Autónoma de Coahuila, Saltillo, Coah, p 25

  • Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E (2005) Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst Appl Microbiol 28:358–365

    PubMed  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    CAS  Google Scholar 

  • Sharma S, Gupta MN (2003) Synthesis of antioxidant propyl gallate using tannase from Aspergillus niger van Teighem in nonaqueous media. Bioorg Med Chem Lett 13:395–397

    CAS  PubMed  Google Scholar 

  • Sharma S, Bhat TK, Gupta MN (2002) Bioaffinity immobilization of tannase from Aspergillus niger on concavalin A-sepharose CL-4B. Biotechnol Appl Biochem 35:165–169

    CAS  PubMed  Google Scholar 

  • Shi B, He Q, Yao K, Huang W, Li Q (2005) Production of ellagic acid from degradation of valonea tannins by Aspergillus niger and Candida utilis. J Chem Technol Biotechnol 80:1154–1159

    CAS  Google Scholar 

  • Sittig M (1988) Trimethoprim. In: Sittig M (ed) Pharmaceutical manufacturing encyclopedia. William Andrew/Noyes, New Jersey, pp 282–284

    Google Scholar 

  • Tieghem, P (1867) Sur la fermentation gallique. CR Acad Sci (Paris) 65:1091–1094

    Google Scholar 

  • Treviño-Cueto B, Luis M, Contreras-Esquivel JC, Rodríguez R, Aguilera A, Aguilar CN (2007) Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant (Larrea tridentate Cov). Bioresour Technol 98:721–724

    PubMed  Google Scholar 

  • Van de Lagemaat J, Pyle DL (2001) Solid-state fermentation and bioremediation: development of a continuous process for the production of fungal tannases. Chem Eng J 84:115–123

    Google Scholar 

  • Van de Lagemaat J, Pyle DL (2005) Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid-state fermentation for tannase production. Process Biochem 40:1773–1782

    Google Scholar 

  • Van Diepeningen AD, Debet A, Varga J, Van der Gaag M, Swart K, Hoekstra R (2004) Efficient degradation of tannic acid by black Aspergillus species. Mycol Res 108:919–925

    PubMed  Google Scholar 

  • Vaquero I, Marcobal A, Muñoz R (2004) Tannase activity by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 96:199–204

    CAS  PubMed  Google Scholar 

  • Vattem DA, Shetty K (2002) Solid-state production of phenolic antioxidants from cranberry pomace by Rhizopus oligosporum. Food Biotechnol 16:189–210

    CAS  Google Scholar 

  • Vattem DA, Shetty K (2003) Ellagic acid production and phenolic antioxidants activity in cranberry pomace (Vaccinium macrocarpo) mediated by Lentinus edodes using a solid-state system. Process Biochem 39:367–379

    CAS  Google Scholar 

  • Viniegra-González G, Favela-Torres E, Aguilar CN, Rómero-Gomez SJ, Díaz-Godínez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167

    Google Scholar 

  • Vivas N, Laguerrre M, Pianet de Boissel I, Vivas de Gaulejac N, Nonier MF (2004) Conformational interpretation of vascalagin and castalagin physicochemical properties. J Agric Food Chem 52:2073–2078

    CAS  PubMed  Google Scholar 

  • Yamada K, Iibuchi S, Minoda Y (1968) Studies on tannin acyl hydrolase of microorganisms. Isolation and identification of producing molds and studies on the conditions of cultivation. Agric Biol Chem 45:233–240

    Google Scholar 

  • Yoshida T, Amakura Y, Koyura N, Ito H, Isaza JH, Ramírez S, Peláez DP, Renner SS (1999) Oligomeric hydrolysable tannins from Tibouchina multiflora. Phytochemistry 52:1661–1666

    CAS  PubMed  Google Scholar 

  • Yu X, Li Y, Wu D (2004) Enzymatic synthesis of gallic acid esters using microencapsulated tannase: effect of organic solvents and enzyme specificity. J Mol Catal B Enzym 30(2):69–73

    CAS  Google Scholar 

  • Yu XW, Li YQ (2006) Kinetics and thermodynamics of synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent. J Mol Catal B Enzym 40:44–50

    CAS  Google Scholar 

  • Zhang YJ, Abe T, Tanaka T, Yang CR, Kouna I (2001) Phyllanemblinins A–F, new ellagitannins from Phyllanthus emblica. J Nat Prod 64:1527–1532

    CAS  PubMed  Google Scholar 

  • Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif 36:165–169

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

C. N. Aguilar thanks CONACYT–SEP (project no. 42244) and COAH–CONACYT (COAH-2002-CO1.2565 and 4652) for financial support. The present work was conducted within the framework of the ECOS program (M02A02, project between Mexico–France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal N. Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, C.N., Rodríguez, R., Gutiérrez-Sánchez, G. et al. Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76, 47–59 (2007). https://doi.org/10.1007/s00253-007-1000-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1000-2

Keywords

Navigation