Skip to main content

Advertisement

Log in

Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study was designed to isolate and characterize endophytic bacteria from sunflower (Helianthus annuus) grown under irrigation and water stress (drought) conditions, to analyze growth of isolated bacteria under drought condition, and to evaluate the ability of bacteria isolated from plants cultivated under drought to produce jasmonates (JAs) and abscisic acid (ABA). Bacteria were isolated from soil samples collected when sunflower plants were at the end of the vegetative stage. A total of 29 endophytic strains were isolated from plants grown under irrigation or drought condition. Eight strains (termed SF1 through SF8) were selected based on nitrogen-fixing ability. All eight strains showed positive catalase and oxidase activities; five strains (SF2, SF3, SF4, SF5, SF7) solubilized phosphates; none of the strains produced siderophores. Strains SF2, SF3, SF4, and SF5, the ones with the highest phosphate solubilization ability, strongly inhibited growth of the pathogenic fungi Verticillum orense and Sclerotinia sclerotiorum but had less inhibitory effect on Alternaria sp. Among the eight strains, SF2 showed 99.9% sequence homology with Achromobacter xiloxidans or Alcaligenes sp., while the other seven showed 99.9% homology with Bacillus pumilus. Strains SF2, SF3, and SF4 grown in control medium produced jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), and ABA. These three strains did not differ in amount of JA or OPDA produced. ABA content was higher than that of JA, and production of both ABA and JA increased under drought condition. The characteristics of these isolated bacterial strains have technological implications for inoculant formulation and improved growth of sunflower crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdala G, Miersch O, Correa N, Rosas S (1999) Detection of jasmonic acid in cultures of Escherichia coli and Saccharomyces cerevisiae. Nat Prod Lett 14(1):55–63

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo W, Maccheroni W, Aguilar-Vildosa C, Baroso P, Saridakis H, Azevedo J (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissue of citrus rootstocks. Can J Microbiol 47:229–236

    Article  CAS  PubMed  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Cassán F, Paz R, Maiale S, Masciarelli O, Vidal A, Luna V, Ruíz O (2005) Cadaverine production by Azospirillum brasilense Az39. A new plant growth promotion mechanism. XV Annual Meeting Sociedad de Biología de Córdoba. Argentina. pp 103 (Abstract)

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Dobbelaere SJ, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Döbereiner J, Day J (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nymans J (eds). Symposium on nitrogen fixation. Washington State University Press, Pullman WA, pp 518–538

    Google Scholar 

  • Feng J, Barker AV (1992) Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stresses. Part II. J Plant Nutr 15:2471–2490

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Mañero FJ, Acero N, Lucas J, Probanza A (1996) The influence of native rhizobacteria on European alder (Agnus glutinosa L. Gaertn.) growth II. Characterization and biological assays of metabolites from growth inhibiting bacteria. Plant Soil 182:67–74

    Article  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo F, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hall MA, Smith AR (1995) Ethylene and the responses of plants to stress. Bulg J Plant Physiol 21:71–79

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • Hanada R, Romeiro R (1998) Seleção preliminar de rizobacterias como promotoras de crescimento e como indutoras de resistência sistêmica a Xanthomonas campestris em girassol. International Seed Testing Association. (1995) 24th Congress of Copenhangen. Published by ISTA, Zurich, CH-Switzerland. Fitopatologia Brasileira 23:209 (Abstract)

  • Higgins DG, Bleasby AJ, Fuchs R (1992) Clustal V: improved software for multiple sequence alignment. CABIOS 8:189–191

    CAS  PubMed  Google Scholar 

  • Katznelson H, Bose B (1959) Metabolic activity and phosphate dissolving capability of bacterial isolates from wheat root, rhizosphere and non-rhizosphere soil. Can J Microbiol 5:79–85

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) ERD15, a cDNA for a dehydration-induce gene from Arabidopsis thaliana. Plant Physiol 106:1707-1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: James C, White J, Jr (eds) Microbial endophytes. Marcel Dekker Inc, New York, pp 199-233

    Google Scholar 

  • Kolb W, Martín P (1985) Response of plant roots to inoculation with Azospirillum brasilense and two application of indole acetic acid. In: Klingmüller W (ed). Azospirillum III: Genetics, Physiology, Ecology. Springer-Verlag, Berlin, pp 215-221

    Chapter  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177-187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Sinclair J (1989) A primary study on biological control of Rhizoctonia Damping-off, root and crown decay of soybeans J Cell Biochem Suppl 13A:177 (Abstract)

    Google Scholar 

  • Liu Z, Sinclair J (1993) Colonization of soybean roots by Bacillus megaterium B153-2-2. Soil Biol Bochem 25:849–855

    Article  Google Scholar 

  • Martínez-Morales L, Soto-Urzua L, Baca B, Sanchez-Ahedo J (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Letters 228:167–173

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Misaghi I, Donndelinger C (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811

    Article  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Müller M, Desgele C, Ziegler H (1989) Hormonal interactions in the rhizosphere of maize (Zea mays L.) and their effects on plant development. Z Pflanzenernahr Bodenkd 152:247–254

    Article  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña Cortés H, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41(2):149–158

    Article  CAS  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophore. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Peterson DJ, Holl FB (1996) Influence of IAA producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhyzobium etli under gnotobiotic conditions. Can J Microbiol 42:1006–1014

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial Endophytes: Potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30

    Article  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-microb Interact 12:951–959

    Article  CAS  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221

    Article  CAS  PubMed  Google Scholar 

  • Zakharova E, Scherbakov A, Brudnik V, Skripko N, Bulkhim SH, Ignatov V (1999) Biosynthesis of indole-3-acetic acid in Azospirillum Brasilense: insight from quantum chemistry. Env J Biochem 259:572–576

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang JZ, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from SECYT-UNRC, CONICET, and ANPCYT to G.A., and fellowship from CONICET to G.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Abdala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forchetti, G., Masciarelli, O., Alemano, S. et al. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76, 1145–1152 (2007). https://doi.org/10.1007/s00253-007-1077-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1077-7

Keywords

Navigation