Skip to main content
Log in

Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free- and/or immobilized-cells formulations

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A bacterial consortium able to mineralize two herbicides, glyphosate (Pseudomonas 4ASW) and diuron (Arthrobacter sp. N4 and Delftia acidovorans), was cultivated in both a synthetic culture medium without phosphate and a sediment extract medium. In the aim at optimizing glyphosate and diuron mineralization, all the combinations, i.e., free and/or immobilized cells in Ca-alginate beads were tested. With the synthetic medium, the simultaneous mineralization of glyphosate and diuron required at least the immobilization of Pseudomonas 4ASW. Conversely, with the sediment extract medium, only the mineralization of diuron was observed, most probably, because of both nutrient deficiency and phosphate in the sediment extract medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araujo ASF, Monteiro RTR, Abarkeli RB (2003) Effects of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804

    Article  CAS  PubMed  Google Scholar 

  • Bagot D, Lebeau T, Jezequel K (2006) Microorganisms for remediation of cadmium-contaminated soils. Environ Chem Lett 4:207–211

    Article  CAS  Google Scholar 

  • Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganism from industrial activated sludge. Appl Environ Microbiol 51:432–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazot S, Bois P, Joyeux C, Lebeau T (2007) Mineralization of diuron [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] by co-immobilized Arthrobacter sp. and Delftia acidovorans. Biotechnol Lett 29:749–754

    Article  CAS  PubMed  Google Scholar 

  • Bettmann H, Rehm HJ (1984) Degradation of phenol by polymer entrapped microorganisms. Appl Microbiol Biotechnol 20:285–290

    Article  CAS  Google Scholar 

  • Braud A, Jezequel K, Lebeau T (2007) Impact of substrates and cell immobilization on siderophore activity by Pseudomonads in a Fe and/or Cr, Hg, Pb containing-medium. J Hazard Mater 144:229–239

    Article  CAS  PubMed  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Cassidy MB, Shaw KW, Lee H, Trevors JT (1997) Enhanced mineralization of pentachlorophenol by к-carrageenan-encapsulated Pseudomonas sp. UG30. Appl Microbiol Biotechnol 47:108–113

    Article  CAS  Google Scholar 

  • Cullington JE, Walker A (1999) Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol Biochem 31:677–686

    Article  CAS  Google Scholar 

  • De-Bashan LE, Moreno M, Hernandez JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948

    Article  CAS  PubMed  Google Scholar 

  • Dejonghe W, Goris J, Dierickxx A, De Dobbeleer V, Crul K, De Vos P, Verstaete W, Top EM (2002) Diversity of 3-chloroaniline and 3.4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation. FEMS Microbiol Ecol 42:315–325

    Article  CAS  PubMed  Google Scholar 

  • Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Höfte M, De Vos P, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dick RE, Quinn JP (1995) Control of glyphosate uptake and metabolism in Pseudomonas sp 4ASW. FEMS Microbiol Lett 134:177–182

    Article  CAS  Google Scholar 

  • Duquenne P, Chenu C, Richard G, Catroux G (1999) Effect of carbon source supply and its location on competition between inoculated and established bacterial strains in sterile soil microcosm. FEMS Microbiol Ecol 29:331–339

    Article  CAS  Google Scholar 

  • El-Deeb BA, Soltan SM, Ali AM et al (2000) Detoxication of the herbicide diuron by Pseudomonas sp. Folia Microbiologica 45:211–216

    Article  CAS  PubMed  Google Scholar 

  • Ellis PA, Camper ND (1982) Degradation of diuron by aquatic microorganisms. J Environ Sci Health 17:277–289

    Article  CAS  Google Scholar 

  • Esposito E, Paulillo SM, Manfio GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37:541–548

    Article  CAS  PubMed  Google Scholar 

  • Feodorov AY, Ignatov OV, Korzhenevich VI, Shub GM (1993) Effect of immobilization in agar gel on the microbiol degradation of xenobiotics. Sixth European Congress Biotechnology, Firenze, 13–17 June, TU 212

  • Gardin H, Pauss A (2001) κ-Carrageenan/gelatine gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2, 4, 6-trichlorophenol under air-limited conditions. Appl Microbiol Biotechnol 56:517–523

    Article  CAS  PubMed  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. . Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Hallas LE, Hahn EM, Korndorfer C (1988) Characterization of microbial traits associated with glyphosate biodegradation in industrial activated sludge. J Indus Microbiol 3:377–385

    Article  CAS  Google Scholar 

  • Heinze U, Rehm HJ (1993) Biodegradation of dichloroacetic acid by entrapped and adsorptive immobilized Xanthobacter autotrophicus GJ10. Appl Microbiol Biotechnol 40:158–164

    Article  CAS  Google Scholar 

  • IFEN (2006) Les pesticides dans les eaux: données 2003–2004. No. 5 août. http://www.ifen.fr/publications/dossiers/PDF/dossier05.pdf.

  • Jacob GS, Garbow JR, Hallas LE (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBR. Appl Environ Microbiol 54:2953–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jezequel K, Perrin J, Lebeau T (2005) Bioaugmentation with a Bacillus sp. to reduce phytoavailable Cd of an agricultural soil: comparison of free and immobilized microbial inocula. Chemosphere 59:1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Kawai S, Uno B, Tomita M (1991) Determination of glyphosate and its metabolite aminomethylphophonic acid by high-performance liquid chromatograhy after derivatization with para-toluenesulfonyl chloride. J Chromatogr 540:411–415

    Article  CAS  Google Scholar 

  • Keweloh H, Heipieper HJ, Rehm HJ (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl Microbiol Biotechnol 31:383–389

    Article  CAS  Google Scholar 

  • Krieg NR (1981) Enrichment and isolation. Manual of methods for general bacteriology. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA (eds) American society of Microbiology, Washington, DC, pp 112–142

    Google Scholar 

  • Lebeau T, Jouenne T, Junter GA (1997) Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme Microb Technol 21:265–272

    Article  CAS  Google Scholar 

  • Lebeau T, Moan R, Turpin V, Robert JM (1998) Alginate-entrapped Haslea ostrearia as inoculum for the greening of oysters. Biotechnol Tech 12:847–850

    Article  CAS  Google Scholar 

  • Lebeau T, Bagot D, Jezequel K, Fabre B (2002) Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture. Sci Total Environ 291:73–83

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Lu CJ, Chuang MS (1994) Effects of immobilized cells on he biodegradation of chlorinated phenols. Water Sci Technol 30:87–90

    Article  CAS  Google Scholar 

  • Lerbs W, Stock M, Parthier B (1990) Physiological aspects of glyphosate degradation in alcaligenes spec strain GL. Arch Microbiol 153:146–150

    Article  CAS  Google Scholar 

  • Liu CM, Mclean PA, Sookdeo CC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol 57:1799–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik J, Barry G, Kishore GM (1989) The herbicide glyphosate. Biofactors 2:17–25

    CAS  PubMed  Google Scholar 

  • McAuliffe KS, Hallas LE, Kulpa CF (1990) Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. J Ind Microbiol 6:219–221

    Article  CAS  Google Scholar 

  • McGrath JW, Ternan NG, Quinn JP (1997) Utilization of organophosphonates by environmental microorganisms. Lett Appl Microbiol 24:69–73

    Article  CAS  Google Scholar 

  • Obojska A, Lejczak B, Kubrak M (1999) Degradation of phosphonates by streptomycete isolates. Appl Microbiol Biotechnol 51:872–876

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly AM, Scott JA (1995) Defined co-immobilization of mixed microorganism cultures. Enzyme Microb Technol 17:636–646

    Article  Google Scholar 

  • Pipke R, Amrhein N (1988) Isolation and characterization of a mutant of Arthrobacter sp. strain GLP1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl Environ Microbiol 54:2868–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JP, Peden JMM, Dick RE (1989) Carbon phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Appl Microbiol Biotechnol 31:283–287

    Article  CAS  Google Scholar 

  • Sorensen PB, Bruggemann R, Carlsen L, Mogensen BB, Kreuger J, Pudenz S (2003) Analysis of monitoring data of pesticide residues in surface waters using partial order ranking theory. Environ Toxicol Chem 22:661–670

    Article  CAS  PubMed  Google Scholar 

  • Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, Bohatier J, Veschambre H (2000) Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manag Sci 56:455–462

    Article  CAS  Google Scholar 

  • Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and transformation. Environ Toxicol Chem 20:1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Tixier C, Sancelme M, Aït-Aïssa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526

    Article  CAS  PubMed  Google Scholar 

  • Travkin V, Solyanikova IP, Rietjens IMCM, Vervoort J, van Berkel WJH, Golovleva LA (2003) Degradation of 3.4-dichloro- and 3.4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health 38:121–132

    Article  CAS  Google Scholar 

  • Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW (2001) Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microbiol 67:2270–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widehem P, Aït-Aïssa S, Tixier C, Sancelme M, Veschambre H, Truffaut N (2002) Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2. Chemosphere 46:527–534

    Article  CAS  PubMed  Google Scholar 

  • You IS, Bartha R (1982) Metabolism of 3.4-dichloroaniline by Pseudomonas putida. J Agric Food Chem 30:274–277

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by the European Commission under the Artwet Project (Life Environment, Life 06 ENV/F/000133) and by the Alsace Région (no. 30/05). We are very grateful to M. Sancelme, W. Dejonghe, and to J. P. Quinn for providing us strains of Arthrobacter sp. N4, D. acidovorans, and Pseudomonas 4ASW, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lebeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazot, S., Lebeau, T. Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free- and/or immobilized-cells formulations. Appl Microbiol Biotechnol 77, 1351–1358 (2008). https://doi.org/10.1007/s00253-007-1259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1259-3

Keywords

Navigation