Skip to main content
Log in

Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Many endophytic fungi are known to protect plants from plant pathogens, but the antagonistic mechanism has rarely been revealed. In this study, we wished to learn whether an endophytic Aspergillus sp., isolated from Taxus mairei, would indeed produce bioactive components, and if so whether (a) they would antagonize plant pathogenic fungi; and (b) whether this Aspergillus sp. would produce the compound also under conditions of confrontation with these fungi. The endophytic fungal strain from T. mairei was identified as Aspergillus clavatonanicus by analysis of morphological characteristics and the sequence of the internal transcribed spacers (ITS rDNA) of rDNA. When grown in surface culture, the fungus produced clavatol (2′,4′-dihydroxy-3′,5′-dimethylacetophenone) and patulin (2-hydroxy-3,7-dioxabicyclo [4.3.0]nona-5,9-dien-8-one), as shown by shown by NMR, MS, X-ray, and EI-MS analysis. Both exhibited inhibitory activity in vitro against several plant pathogenic fungi, i.e., Botrytis cinerea, Didymella bryoniae, Fusarium oxysporum f. sp. cucumerinum, Rhizoctonia solani, and Pythium ultimum. During confrontation with P. ultimum, A. clavatonanicus antagonized its growth of P. ultimum, and both clavatol as well as patulin were formed as the only bioactive components, albeit with different kinetics. We conclude that A. clavatonanicus produces clavatol and patulin, and that these two polyketides may be involved in the protection of T. mairei against attack by plant pathogens by this Aspergillus sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Article  Google Scholar 

  • Batista AC, Maia HS, Alecrim IC (1955) Onicomicose produzida por Aspergillus clavatonanicus. Ann Fac Méd Recife 15:197–203

    Google Scholar 

  • Bergel F, Morrison AL, Moss AR, Rinderknecht H (1944) Antibacterial substance from Aspergillus clavatus. J Am Chem Soc 66:415–417

    Article  Google Scholar 

  • Brady SF, Wagenaar MM, Singh MP, Janso JE, Clardy J (2000) The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org Lett 2:4043–4046

    Article  CAS  Google Scholar 

  • Calvo AM, Wilson RA, Bok RW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  CAS  Google Scholar 

  • Cole RJ, Cox RH (1981) Handbook of toxic fungal metabolites. Academic, New York, pp 510–526

    Book  Google Scholar 

  • Gatenbeck S, Brunsberg U (1966) The mechanism of clavatol formation in Aspergillus clavatus. Acta Chem Scand 20:2334–2338

    Article  CAS  Google Scholar 

  • Hassall CH, Todd AR (1947) Structure of clavatol, a metabolic product ofAspergillus clavatus. J Chem Soc 69:611–613

    Article  Google Scholar 

  • Herrera-Estrella A, Chet I (2003) The biological control agent Trichoderma: from fundamentals to applications. In: Arora DK, Bridge P, Bhatnagar D (eds) Fungal biotechnology in agricultural, food and environmental applications. Marcel Dekker, New York, pp 147–155

    Google Scholar 

  • Hinrikson HP, Hurst SF, Lott TJ, Warnock DW, Morrison CJ (2005) Assessment of ribosomal large-subunit D1–D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J Clin Microbiol 43:2092–2103

    Article  CAS  Google Scholar 

  • Kim BS, Hwang BK (2003) Biofungicides. In: Arora DK, Bridge P, Bhatnagar D (eds) Fungal biotechnology in agricultural, food and environmental applications. Marcel Dekker, New York, pp 123–133

    Google Scholar 

  • Kong H, Qi Z (1985) Some new records and rare taxa of Aspergillus of China. Bull Bot Res 5:147–152

    Google Scholar 

  • Li SY, Wang JF, Zheng ZH, Xu QY, Huang YJ, Zhao YF, Su WJ (2003) 1-(2,4-dihydroxi-3,5-dimethylphenyl)-ethanone (clavatol). Acta Crystallogr Sect E Struct Rep E59:1469–1470

    Article  Google Scholar 

  • Liu JY, Song YC, Zhang Z, Wang L, Guo ZJ, Zou WX, Tan RX (2004) Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J Biotechnol 114:279–287

    Article  CAS  Google Scholar 

  • Melchent HU, Pabel E (2004) Reliable identification and quantification of trichothecenes and other mycotoxins by electron impact and chemical ionization–gas chromatography–mass spectrometry, using an ion-trap system in the multiple mass spectrometry mode: candidate reference method for complex matrices. J Chromatogr A 1056:195–199

    CAS  PubMed  Google Scholar 

  • Nicoletti R, Stefano M, De Stefano S, Trincone A, Marziano F (2004) Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates. Mycopathologia 158:465–474

    Article  CAS  Google Scholar 

  • Riley RT, Showker JL (1991) The mechanism of patulin’s cytotoxicity and the antioxidant activity of indole tetramic acids. Toxicol Appl Pharmacol 109:108–126

    Article  CAS  Google Scholar 

  • Sabater-Vilar M, Maas RF, De Bosschere H, Ducatelle R, Fink-Gremmels J (2004) Patulin produced by an Aspergillus clavatus isolated from feed containing malting residues associated with a lethal neurotoxicosis in cattle. Mycopathologia 158:419–426

    Article  CAS  Google Scholar 

  • Samuels GJ, Suarez C, Solis K, Holmes KA, Thomas SE, Ismaiel A, Evans HC (2006) Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America. Mycol Res 110:381–392

    Article  Google Scholar 

  • Scott PM (1974) Patulin. In: Purchase IFH (ed) Mycotoxins. Elsevier, Amsterdam, pp 383–403

    Google Scholar 

  • Sekiguchi J, Gaucher GM (1979) Patulin biosynthesis: the metabolism of phyllostine and isoepoxydon by cell-free preparations from Pencillium urticae. Can J Microbiol 25:881–887

    Article  CAS  Google Scholar 

  • Shrestha K, Strobel GA, Shrivastava SP, Gewali MB (2001) Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Med 67:374–376

    Article  CAS  Google Scholar 

  • Silva GH, Teles HL, Trevisan HC, Bolzani VD, Young MCM, Pfenning LH, Eberlin MN, Haddad R, Costa-Neto CM, Araujo AR (2005) New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J Braz Chem Soc 16:1463–1466

    Article  CAS  Google Scholar 

  • Stierle AA, Stierle DB, Bugni T (1999) Sequoiatones A and B: novel antitumor metabolites isolated from a redwood endophyte. J Org Chem 64:5479–5484

    Article  CAS  Google Scholar 

  • Strobel G (2002) Microbial gifts from rain forests. Can J Plant Pathol 24:14–20

    Article  Google Scholar 

  • Sumbu ZL, Thomart P, Bechet J (1983) Action of patulin on yeast. Appl Environ Microbiol 45:110–115

    Article  CAS  Google Scholar 

  • Varga J, Rigó K, Molnár J, Tóth B, Szencz S, Téren J, Kozakiewicz Z (2003) Mycotoxin production and evolutionary relationships among species of Aspergillus section clavati. Antonie Van Leeuwenhoek 83:191–200

    Article  CAS  Google Scholar 

  • Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol Med Microbiol 34:51–57

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (ed) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Zhang C, Liu S, Lin F, Kubicek CP, Druzhinina IS (2007) Trichoderma taxi sp. nov., an endophytic fungus from Chinese yew Taxus mairei. FEMS Microbiol Lett 270:90–96

    Article  CAS  Google Scholar 

  • Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Project of Zhejiang Province (No. 2004C22008) and the Science and Technology Development Project of Hangzhou Municipality (No. 2003132B19) to Fucheng Lin and by the Science and Technology Project of Zhejiang Province (No. 2006C12088), the Science and Technology Project of Ningbo Municipality (No. 2006C100031), and the National Natural Science Foundation of China (No. 30600002) to Chulong Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-Yuan Chen or Fu-Cheng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CL., Zheng, BQ., Lao, JP. et al. Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei . Appl Microbiol Biotechnol 78, 833–840 (2008). https://doi.org/10.1007/s00253-008-1371-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1371-z

Keywords

Navigation