Skip to main content
Log in

CO2 bio-mitigation using microalgae

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae are a group of unicellular or simple multicellular photosynthetic microorganisms that can fix CO2 efficiently from different sources, including the atmosphere, industrial exhaust gases, and soluble carbonate salts. Combination of CO2 fixation, biofuel production, and wastewater treatment may provide a very promising alternative to current CO2 mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agren GI (2004) The C:N:P stoichiometry of autotrophs—theory and observations. Ecol Lett 7:185–191

    Article  Google Scholar 

  • Antal Jr MJ, Allen SG, Schulman D, Xu X, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39:4040–4053

    Article  CAS  Google Scholar 

  • Bayer FL (1981) Pyrolysis gas chromatographic characterization differentiation and identification of biopolymers—an overview. Adv Chem Ser 1983:693–704

    Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Tech 26:516–529

    Article  CAS  Google Scholar 

  • Benemann JR, Koopman BL, Weissman JC, Oswald WJ (1977) Solar energy conversion with microalgal sewage treatment ponds. Proc Annu Meet Am Sect Int Sol Energy Soc 1:5

    Google Scholar 

  • Berberoglu H, Yin J, Pilon L (2007) Light transfer in bubble sparged photobioreactors for H2 production and CO2 mitigation. Int J Hydrogen Energy 32:2273–2285

    Article  CAS  Google Scholar 

  • Blauwhoff PMM, Versteeg GF, Van Swaaij WPM (1984) A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chem Eng Sci 39:207–225

    Article  CAS  Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the Algae, 2nd ed, Prentice-Hall, Inc., Englewood Cliffs, NJ, USA

    Google Scholar 

  • Bonenfant D, Mimeault M, Hausler R (2003) Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution. Ind Eng Chem Res 42:3179–3184

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Chelf P, Brown LM, Wyman CE (1993) Aquatic biomass resources and carbon dioxide trapping. Biomass Bioenergy 4:175–183

    Article  CAS  Google Scholar 

  • Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sustain Energy Rev 11:1056–1086

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ 18:919–924

    Article  CAS  Google Scholar 

  • Cooper CD, Alley FC (1994) Air pollution control: a design approach. Waveland, Prospect Heights, IL

    Google Scholar 

  • de Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  PubMed  CAS  Google Scholar 

  • de Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48:2169–2173

    Article  CAS  Google Scholar 

  • Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646

    Article  CAS  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378

    Article  CAS  Google Scholar 

  • Demirbas A (2004) Current technologies for the thermo-conversion of biomass into fuels and chemicals. Energy Source 26:715–730

    Article  CAS  Google Scholar 

  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S-Y (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857

    Article  CAS  Google Scholar 

  • Elliott DC, Sealock Jr LJ (1996) Chemical processing in high-pressure aqueous environments: low-temperature catalytic gasification. Chem Eng Res Des 74:563–566

    CAS  Google Scholar 

  • Emma Huertas I, Colman B, Espie GS, Lubian LM (2000) Active transport of CO2 by three species of marine microalgae. J Phycol 36:314–320

    Article  Google Scholar 

  • Feng W, van der Kooi HJ, de Swaan Arons J (2004) Phase equilibria for biomass conversion processes in subcritical and supercritical water. Chem Eng J 98:105–113

    Article  CAS  Google Scholar 

  • Gauthier DA, Turpin DH (1997) Interactions between inorganic phosphate (Pi) assimilation, photosynthesis and respiration in the Pi-limited green alga Selenastrum minutum. Plant Cell Environ 20:12–24

    Article  CAS  Google Scholar 

  • Ginzburg BZ (1993) Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew Energy 3:249–252

    Article  CAS  Google Scholar 

  • Gomez-Villa H, Voltolina D, Nieves M, Pina P (2005) Biomass production and nutrient budget in outdoor cultures of Scenedesmus obliquus (Chlorophyceae) in artificial wastewater, under the winter and summer conditions of Mazatlan, Sinaloa, Mexico. Vie et Milieu 55:121–126

    Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517

    Article  CAS  Google Scholar 

  • Gupta H, Fan LS (2002) Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042

    Article  CAS  Google Scholar 

  • Gutierrez R, Gutierrez-Sanchez R, Nafidi A (2008) Trend analysis using nonhomogeneous stochastic diffusion processes. Emission of CO2; Kyoto protocol in Spain. Stoch Environ Res Risk Assess 22:57–66

    Article  Google Scholar 

  • Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve mollusks—a summary. Aquacult Res 31:637–659

    Google Scholar 

  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404

    Article  CAS  Google Scholar 

  • Hooper LA, Hollein HC, Slater CS (1998) Microfiltration of Streptomyces rimosus: cell harvesting process studies. Sep Sci Technol 33:1747–1765

    Article  CAS  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    Article  CAS  PubMed  Google Scholar 

  • Hung MT, Liu JC (2006) Microfiltration for separation of green algae from water. Colloids Surf B Biointerfaces 51:157–164

    Article  CAS  PubMed  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strategies Glob Chang 12:573–608

    Article  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki I, Hu Q, Kurano N, Miyachi S (1998) Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J Photochem Photobiol B 44:184–190

    Article  CAS  Google Scholar 

  • Javanmardian M, Palsson BO (1991) High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system. Biotechnol Bioeng 38:1182–1189

    Article  CAS  PubMed  Google Scholar 

  • Kadam KL (1997) Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options. Energy Convers Manag 38(Suppl 1):S505–S510

    Article  CAS  Google Scholar 

  • Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technol 98:288–295

    Article  CAS  Google Scholar 

  • Kawata M, Nanba M, Matsukawa R, Chihara M, Karube I (1998) Isolation and characterization of a green alga Neochloris sp. for CO2 fixation. Stud Surf Sci Catal 114:637–640

    Article  CAS  Google Scholar 

  • Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama SY, Yamaberi K (1994) CO2 fixation and oil production using micro-algae. J Ferment Bioeng 78:479–482

    Article  CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313

    Article  Google Scholar 

  • Kondili EM, Kaldellis JK (2007) Biofuel implementation in East Europe: current status and future prospects. Renew Sustain Energy Rev 11:2137–2151

    Article  Google Scholar 

  • Krumdieck S, Wallace J, Curnow O (2008) Compact, low energy CO2 management using amine solution in a packed bubble column. Chem Eng J 135:3–9

    Article  CAS  Google Scholar 

  • Li Y. Horsman M., Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotech Prog (in press) ASAP Article, DOI https://doi.org/10.1021/bp070371kS8756-7938(07)00371-2

  • Lin CC, Liu WT, Tan CS (2003) Removal of carbon dioxide by absorption in a rotating packed bed. Ind Eng Chem Res 42:2381–2386

    Article  CAS  Google Scholar 

  • Lourenco SO, Barbarino E, Lanfer Marquez UM, Aidar E (1998) Distribution of intracellular nitrogen in marine microalgae: basis for the calculation of specific nitrogen-to-protein conversion factors. J Phycol 34:798–811

    Article  CAS  Google Scholar 

  • Lourenco SO, Barbarino E, Mancini-Filho J, Schinke KP, Aidar E (2002) Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41:158–168

    Article  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manag 36:717–720

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15:377–390

    Article  CAS  PubMed  Google Scholar 

  • Mandalam RK, Palsson B (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol Bioeng 59:605–611

    Article  CAS  PubMed  Google Scholar 

  • Martinez ME, Jimenez JM, El Yousfi F (1999) Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour Technol 67:233–240

    Article  CAS  Google Scholar 

  • Matsumoto H, Hamasaki A, Sioji N, Ikuta Y (1997) Influence of CO2, SO2 and no in flue gas on microalgae productivity. J Chem Eng Japan 30:620–624

    Article  CAS  Google Scholar 

  • Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T (2006) Supercritical water treatment of biomass for energy and material recovery. Combust Sci Technol 178:509–536

    Article  CAS  Google Scholar 

  • McKendry P (2002a) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  PubMed  Google Scholar 

  • McKendry P (2002b) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63

    Article  CAS  PubMed  Google Scholar 

  • Merrett MJ, Nimer NA, Dong LF (1996) The utilization of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd. Plant Cell Environ 19:478–484

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrol 71:855–863

    Article  CAS  Google Scholar 

  • Minowa T, Sawayama S (1999) Novel microalgal system for energy production with nitrogen cycling. Fuel 78:1213–1215

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE (2): screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manag 38(Suppl 1):S493–S497

    Article  CAS  Google Scholar 

  • Osada M, Sato T, Watanabe M, Adschiri T, Arai K (2004) Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuel 18:327–333

    Article  CAS  Google Scholar 

  • Oswald WJ (1973) Productivity of algae in sewage disposal. Solar Energy 15(1):107–117

    Article  CAS  Google Scholar 

  • Peng W, Wu Q, Tu P, Zhao N (2001) Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresour Technol 80:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL et al (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1047–1050

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Perez A, Garcia-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agr Food Chem 49:2966–2972

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Resnik KP, Yeh JT, Pennline HW (2004) Aqua ammonia process for simultaneous removal of CO2, SO 2 and NOx. Int J Environ Technol Manag 4:89–104

    Article  CAS  Google Scholar 

  • Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628

    Article  CAS  Google Scholar 

  • Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    Article  CAS  PubMed  Google Scholar 

  • Rosello Sastre R, Csogor Z, Perner-Nochta I, Fleck-Schneider P, Posten C (2007) Scale-down of microalgae cultivations in tubular photo-bioreactors—a conceptual approach. J Biotechnol 132:127–133

    Article  CAS  PubMed  Google Scholar 

  • Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manag 36:693–696

    Article  CAS  Google Scholar 

  • Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73

    Article  CAS  Google Scholar 

  • Seefeldt LC (2007) Utah group plans to make biodiesel from algae. Ind Bioprocess 29:5–6

    Google Scholar 

  • Shi M, Shen YM (2003) Recent progresses on the fixation of carbon dioxide. Curr Org Chem 7:737–745

    Article  CAS  Google Scholar 

  • Skjanes K, Lindblad P, Muller J (2007) BioCO2—a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 24:405–413

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Sutton D, Kelleher B, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Proc Technol 73:155–173

    Article  CAS  Google Scholar 

  • Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzyme Microb Technol 7:474–487

    Article  Google Scholar 

  • Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  • Travieso L, Hall DO, Rao KK, Benitez F, Sanchez E, Borja R (2001) A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. Int Biodeterior Biodegrad 47:151–155

    Article  CAS  Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Petrol Inst 48:251–259

    Article  CAS  Google Scholar 

  • Usui N, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE(1): highly-effective photobioreactor system. Energy Convers Manag 38(Suppl 1):S487–S492

    Article  CAS  Google Scholar 

  • Vonshak A, Richmond A (1988) Mass production of the blue-green alga spirulina: an overview. Biomass London 15:233–247

    Article  Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Phhotobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  PubMed  Google Scholar 

  • Yamaberi K, Takagi M, Yoshida T (1998) Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil. J Mar Biotechnol 6:44–48

    CAS  Google Scholar 

  • Yeh JT, Pennline HW, Resnik KP (2001) Study of CO2 absorption and desorption in a packed column. Energy Fuel. 15:274–278

    Article  CAS  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455

    Article  CAS  Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Final supports from NSERC (the Natural Science and Engineering Research Council, Canada) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Q. Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Li, Y., Wu, N. et al. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79, 707–718 (2008). https://doi.org/10.1007/s00253-008-1518-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1518-y

Keywords

Navigation