Skip to main content
Log in

Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The following bead mills used for disruption of the microalga Chlorella cells were tested: (1) Dyno-Mill ECM-Pilot, grinding chamber volume 1.5 L; KDL-Pilot A, chamber volume 1.4 L; KD 20 S, chamber volume 18.3 L; KD 25 S, chamber volume 26 L of Willy A. Bachofen, Basel, Switzerland, (2) LabStar LS 1, chamber volume 0.6 L of Netzsch, Selb, Germany, (3) MS 18, chamber volume 1.1 L of FrymaKoruma, Neuenburg, Germany. Amount of disrupted cells decreased with increasing Chlorella suspension feed rate and increased up to about 85% of the beads volume in the grinding chamber of the homogenizers. It also increased with agitator speed and number of passes of the algae suspension through the chamber. The optimum beads diameter was 0.3–0.5 mm in the homogenizers Dyno-Mill and LabStar LS 1 and 0.5–0.7 mm in the homogenizer MS 18. While the degree of the cell disruption decreased with increasing cell density in Dyno-Mill and LabStar, the cell disruption in the MS 18 increased. Depending on processing parameters, more than 90% of algae cells were disrupted by passing through the bead mills and bacteria count in algae suspension was reduced to about two orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker EW (1994) Microalgae—Biotechnology and microbiology. Cambridge University Press, 293 p

  • Doucha J, Lívanský K (1995) Novel outdoor thin-layer high density microalgal culture system: Productivity and operational parameters. Arch Hydrobiol 106/Algolog Stud 76:129–147

    Google Scholar 

  • Doucha J, Lívanský K (1998, 1999): Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process. Greek Patent 1002924, 1998; US Patent 5981271 A, 1999

  • Doucha J (1998) The Chlorella program in the Czech Republic. Inst. Microbiol., Czech Acad. Sci., 16 p

  • Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in Middle and Southern European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  • Engler CR (1993) Cell breakage. In: Harrison RG (ed) Protein Purification Process Engineering. CRC Press, pp 37–55

  • Chisti Y, Moo-young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8:194–204

    Article  CAS  Google Scholar 

  • Hatti-Kaul R, Mattiasson B (2003) Release of protein from biological host. In: Hatti-Kaul R, Mattiasson B (eds) Isolation and Puirification of Proteins. CRC, pp 1–28

  • Hedenskog G, Enebo L, Vendlová J, Prokeš B (1969) Investigation of some methods for increasing the digestibility in vitro of microalgae. Biotechnol Bioeng 11:37–51

    Article  CAS  PubMed  Google Scholar 

  • Heim A, Solecki M (1999) Disintegration of microorganisms in a bead mill with a multi-disc impeller. Powder Technol 105:389–395

    Article  CAS  Google Scholar 

  • Kula MR, Schütte H (1983) Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzyme Microb Technol 5:143–148

    Article  Google Scholar 

  • Kula MR, Schütte H (1987) Purification of proteins and the disruption of microbial cells. Biotechnol Progr 3:31–42

    Article  CAS  Google Scholar 

  • Limon-Lason J, Hoare M, Orsborn CB, Doyle DJ, Dunnill P (1979) Reactor properties of a high-speed bead mill for microbial cell rupture. Biotechnol Bioeng 21:745–774

    Article  Google Scholar 

  • Mendes-Pinto MM, Rapovo MFJ, Bowen J, Zouny AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24

    Article  Google Scholar 

  • Middelberg APJ (1995) Process-Scale Disruption of Microorganisms. Biotechnol Adv 13:491–555

    Article  CAS  PubMed  Google Scholar 

  • Mogren H, Lindblom M, Hedenskog G (1974) Mechanical disintegration of microorganisms in an industrial homogenizer. Biotechnol Bioeng 16:261–274

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Vhosti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Advances 20:491–515

    Article  CAS  Google Scholar 

  • Molina Grima E, Acién Fernández FG, Robles Medina A (2004) Downstream Processing of Cell-mass and Products. In: Richmond A (ed) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell, pp. 215–252

  • Mölls HH, Hörnle R (1972) Wirkungsmechanismus der Nasszerkleinerung in der Rührswerkkugelmühle. In: Rumpf H, Schönert K (eds) Dechema-Monographien No 1292–1362 (69), Teil 2. Verlag Chemie, Weinheim, p. 631–661

  • Novotný P (1964) A simple rotary disintegrator for micro-organisms and animal tissues. Nature. Apr 25; 202:364–366

    Google Scholar 

  • Řeháček J, Beran K, Bičík V (1969) Disintegration of microorganisms and preparation of yeast cell walls in a new type of disintegrator. Appl Microbiol 17:462–466

    Article  PubMed  PubMed Central  Google Scholar 

  • Řeháček J (1971) Continuous disintegration of microorganisms in a new laboratory apparatus. Experientia 27:1103

    Article  Google Scholar 

  • Řeháček J, Schaefer J (1977) Disintegration of microorganisms in an industrial horizontal mill of novel design. Biotechnol Bioeng 19:1523–1534

    Article  Google Scholar 

  • Schütte H, Kula MR (1986) Einsatz von Rührwerkskugelmühlen und Hochdruckhomogenisatoren für den technischen Aufschluss von Mikroorganismen. Biotech-Forum 3:68–80

    Google Scholar 

  • Schütte H, Kraume-Flügel R, Kula MR (1986) Scale-up of mechanical cell disintegration: Influence of the stirrer geometry on the residence time distribution in a 20 L high-speed bead mill. Ger Chem Eng 9:149–156

    Google Scholar 

  • Schütte H, Kula MR (1990) Bead mill disruption. In: Asenjo JA (ed) Separation Processes in Biotechnology. Marcell Decker, pp. 107–141

  • Wimpenny JWT (1967) Breakage of microorganisms. Proc Biochem 2:41–44

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the institutions in which the experiments were performed: Willy A. Bachofen AG Maschinenfabrik, Basel, Switzerland; Netzsch Feinmahltechnik, Selb, Germany; ProTech laboratory, Neuenburg, of the FrymaKoruma, Rheinfelden, Germany.

We also thank the Czech representatives of these institutions for valuable cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Doucha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doucha, J., Lívanský, K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81, 431–440 (2008). https://doi.org/10.1007/s00253-008-1660-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1660-6

Keywords

Navigation