Skip to main content

Advertisement

Log in

Methanogenesis in membraneless microbial electrolysis cells

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Operation of microbial electrolysis cells (MECs) without an ion exchange membrane could help to lower the construction costs while lowering the ohmic cell resistance and improving MEC conversion rates by minimizing the pH gradient between anode and cathode. In this research, we demonstrate that membraneless MECs with plain graphite can be operated for methane production without pH adjustment and that the ohmic cell resistance could be lowered with approximately 50% by removing the cation exchange membrane. As a result, the current production increased from 66 ± 2 to 156 ± 1 A m−3 MEC by removing the membrane with an applied voltage of −0.8 V. Methane was the main energetic product despite continuous operation under carbonate-limited and slightly acidified conditions (pH 6.1–6.2). Our results suggest that continuous production of hydrogen in membraneless MECs will be challenging since methane production might not be avoided easily. The electrical energy invested was not always completely recovered under the form of an energy-rich biogas; however, our results indicate that membraneless MECs might be a viable polishing step for the treatment of the effluent of anaerobic digesters as methane was produced under low organic loading conditions and at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406

    Article  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, DeSchamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    Article  CAS  Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008a) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913

    Article  CAS  Google Scholar 

  • Clauwaert P, Toledo R, Van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008b) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57:575–579

    Article  CAS  Google Scholar 

  • Downing LS, Nerenberg R (2007) Performance and microbial ecology of the hybrid membrane biofilm process for concurrent nitrification and denitrification of wastewater. Water Sci Technol 55:355–362

    Article  CAS  Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603

    Article  CAS  Google Scholar 

  • Ishizaki A, Tanaka K, Takeshita T, Kanemaru T, Shimoji T, Kawano T (1993) Equipment and operation for fermentative PHB production using gaseous substrate to guarantee safety from explosion. J Chem Eng Jpn 26:225–227

    Article  CAS  Google Scholar 

  • Kim JR, Zuo Y, Regan JM, Logan BE (2008) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99:1120–1127

    Article  CAS  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  Google Scholar 

  • Niessen J, Schroder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571–575

    Article  CAS  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292

    Article  CAS  Google Scholar 

  • Rabaey K, Vandesompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224

    Article  CAS  Google Scholar 

  • Roy R, Conrad R (1999) Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil. FEMS Microbiol Ecol 28:49–61

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Buisman CJN (2006a) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006b) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31:1632–1640

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Molenkmp RJ, Buisman JN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994

    Article  CAS  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  CAS  Google Scholar 

  • Satyawali Y, Van de Wiele T, Saveyn H, Van der Meeren P, Verstraete W (2007) Electrolytic reduction improves treatability of humic acids containing water streams. J Chem Technol Biotechnol 82:730–737

    Article  CAS  Google Scholar 

  • van Lier JB, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Pol LWH, Lens P, Verstraete W (2001) New perspectives in anaerobic digestion. Water Sci Technol 43:1–18

    Article  Google Scholar 

  • Zeeman G, Kujawa K, de Mes T, Hernandez L, de Graaff M, Abu-Ghunmi L, Mels A, Meulman B, Temmink H, Buisman C, van Lier J, Lettinga G (2008) Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). Water Sci Technol 57:1207–1212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The useful comments of Caitlyn Shea, Robert Nerenberg, Pieter Van de Caveye, Liesje De Schamphelaire, and Jingxing Ma are kindly acknowledged. This research was funded by a Ph.D grant (IWT grant 53305) of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) and by MIP-2007-04-Sewage Plus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Electronic Supplementary Material

A scheme of the reactor design and the different operation modes are available.

ESM 1

(PDF 58 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauwaert, P., Verstraete, W. Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82, 829–836 (2009). https://doi.org/10.1007/s00253-008-1796-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1796-4

Keywords

Navigation