Skip to main content
Log in

Temperature has reciprocal effects on colanic acid and polysialic acid biosynthesis in E. coli K92

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli K92 is an opportunistic pathogen bacterium able to produce polysialic acid (PA) capsules when grows at 37°C. PA polysaccharides are cell-associated homopolymers tailored from acid sialic monomers that function as virulence factors in different neuroinvasive diseases caused by certain Enterobacteriaceae. Conversely, when grows at 19°C (restrictive conditions), PA synthesis was negligible, whereas in such condition, a slimy substance started to be accumulated in the culture broths. Analysis by uronic acids colorimetric determinations, gas chromatography–mass spectrometry, and Fourier transform infrared spectroscopy allowed the isolation and identification of mucoid substance as colanic acid (CA). CA is a heteropolymer containing glucose, galactose, fucose, and glucuronic acid as monomers which seems to be involved in the protection of this bacterium against environment assaults. The study of physicochemical conditions required for CA synthesis revealed that in E. coli K92, nutrient (carbon and nitrogen sources) modulates CA production, reaching the maximal values when glucose and proline were as carbon and nitrogen sources, respectively. Furthermore, we have found that E. coli K92 is able to produce CA at all temperatures tested (from 42°C to 15°C), whereas PA synthesis only occurred when bacteria were cultured at temperatures higher than 25°C. Additionally, genetic engineering approaches revealed that the CA cluster including several genes required for synthesis was placed into a DNA fragment of 100 kb using polymerase chain reaction methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barry GT (1959) Detection of sialic acid in various E. coli strains and other species of bacteria. Nature 183:117–118

    Article  CAS  Google Scholar 

  • Bradford M (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cescutti P, Bigio M, Guarnieri V (1996) Determination of the size and degree of acetyl substitution of oligosaccharides from Neisseria meningitidis group A by ionspray mass spectrometry. Biochem Biophys Res Commun 224:444–450

    Article  CAS  Google Scholar 

  • Charland N, Kobisch M, Martineau-Doizé B, Jacques M, Gottschalk M (1996) Role of capsular sialic acid in virulence and resistance to phagocytosis of Streptococcus suis capsular type 2. FEMS Inmunol Med Microbiol 14:195–203

    Article  CAS  Google Scholar 

  • Chen J, Lee SM, Mao Y (2004) Protective effect of exopolysaccharide colanic acid of Escherichia coli 0157:H7 to osmotic and oxidative stress. Int J Food Microbiol 93:281–286

    Article  CAS  Google Scholar 

  • Corfield AP, Schauer R (1982) Metabolism of sialic acids. In: Schauer R (ed) Sialic acids. Chemistry, metabolism and function. Springer, New York, pp 195–261

    Chapter  Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596

    Article  CAS  Google Scholar 

  • Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Egan W, Liu T, Dorow D, Cohen JS, Robbins JD, Gotschlich EC, Robbins JB (1977) Structural studies on the sialic acid polysaccharide antigen in E. coli strain Bos-12. Biochemistry 16:3687–3692

    Article  CAS  Google Scholar 

  • Ezquerro-Sáenz C, Ferrero MA, Revilla-Nuín B, López-Velasco FF, Martínez-Blanco H, Rodríguez-Aparicio LB (2006) Transport of N-acetyl-d-galactosamine in Escherichia coli K92: effect on acetyl-amino sugar metabolism and polysialic acid production. Biochimie 88:95–102

    Article  Google Scholar 

  • Ferrero MA, Reglero A, Fernández-López M, Ordás R, Rodríguez-Aparicio LB (1996) N-Acetyl-d-neuraminic acid lyase generates the sialic acid for colominic acid biosynthesis in Escherichia coli K1. Biochem J 317:157–165

    Article  CAS  Google Scholar 

  • Goebel WF (1963) Colanic acid. Proc Natl Acad Sci U S A 49:464–471

    Article  CAS  Google Scholar 

  • González-Clemente C, Luengo JM, Rodríguez-Aparicio LB, Ferrero MA, Reglero A (1990) High production of polysialic acid [Neu5Ac alpha(2-8)-Neu5Ac alpha(2-9)]n by Escherichia coli grown in a chemically defined medium. Biol Chem Hoppe Seyler 371:1101–1106

    Article  Google Scholar 

  • González-Clemente C, Luengo JM, Rodríguez-Aparicio LB, Reglero A (1989) Regulation of colominic polysialic acid biosynthesis by temperature: role of cytidine 5-monophosphate N-acetylneuraminic acid. FEBS Lett 250:429–432

    Article  Google Scholar 

  • Gottesman S, Stout V (1991) Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 5:1599–1606

    Article  CAS  Google Scholar 

  • Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T (2003) Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185:5735–5746

    Article  CAS  Google Scholar 

  • Huang YH, Ferriéres L, Clarke DJ (2006) The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol 157:206–212

    Article  CAS  Google Scholar 

  • Keenleyside WJ, Bronner D, Jann K, Jann B, Whitfield C (1993) Coexpression of colanic acid and serotype-specific capsular polysaccharides in Escherichia coli strains with group II K antigens. J Bacteriol 175:6725–6730

    Article  CAS  Google Scholar 

  • Madjalani N, Gottesman S (2006) The Rcs phosphorelay: a complex signal transduction system*. Annu Rev Microbiol 59:379–405

    Google Scholar 

  • Mejbaum W (1939) Über die bestimmung kleiner pentosemengen, insbesoudere in derivaten der adenylsäure. Hoppe-Seyler’s Z Physiol Chem 258:117

    Article  CAS  Google Scholar 

  • Moe GR, Granoff DM (2001) Molecular mimetics of Neisseria meningitidis serogroup B polysaccharide. Int Rev Immunol 20:201–220

    Article  CAS  Google Scholar 

  • Ortiz AI, Reglero A, Rodríguez-Aparicio LB, Luengo JM (1989) In vitro synthesis of colominic acid by membrane-bound sialyltransferase of Escherichia coli K-235. Kinetic properties of this enzyme and inhibition by CMP and other cytidine nucleotides. Eur J Biochem 178:741–749

    Article  CAS  Google Scholar 

  • Reglero A, Rodríguez-Aparicio LB, Luengo JM (1993) Polysialic acids. Int J Biochem 25:1517–1527

    Article  CAS  Google Scholar 

  • Revilla-Nuín B, Rodríguez-Aparicio LB, Ferrero MA, Reglero A (1998) Regulation of capsular polysialic acid biosynthesis by N-acetyl-d-mannosamine, an intermediate of sialic acid metabolism. FEBS Lett 426:191–195

    Article  Google Scholar 

  • Reid AN, Whitfield C (2005) Functional analysis of conserved gene products involved in assembly of Escherichia coli capsules and exopolysaccharides: evidence for molecular recognition between Wza and Wzc for colanic acid biosynthesis. J Bacteriol 187:5470–5481

    Article  CAS  Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Article  CAS  Google Scholar 

  • Rodríguez-Aparicio LB, Ferrero MA, Reglero A (1995) N-Acetyl-d-neuraminic acid synthesis in Escherichia coli K1 occurs through condensation of N-acetyl-d-mannosamine and pyruvate. Biochem J 308:501–505

    Article  Google Scholar 

  • Rodríguez-Aparicio LB, Luengo JM, González-Clemente C, Reglero A (1992) Purification and characterization of the nuclear cytidine 5′-monophosphate N-acetylneuraminic acid synthase from rat liver. J Bio Chem 276:9257–9263

    Google Scholar 

  • Rodríguez-Aparicio LB, Reglero A, Ortiz AI, Luengo JM (1989) Effect of physical and chemical conditions on the production of colominic acid by Escherichia coli in a defined medium. Appl Microbiol Biotechnol 27:474–483

    Article  Google Scholar 

  • Russo TA, Singh G (1993) An extraintestinal pathogenic isolate of Escherichia coli (O4/K54/H5) can produce a group 1 capsule which is divergently regulated from its constitutively produced group 2, K54 capsular polysaccharide. J Bacteriol 175:7617–7623

    Article  Google Scholar 

  • Sassaki GL, Gorin PAJ, Souza LM, Czelusnaik A, Iacomini M (2005) Rapid synthesis of partially O-methylated alditol acetate standards for GM–MS: some relative activities of hydroxyl groups of methyl glycopyranosides on Purdie methylation. Carbohydr Res 340:731–739

    Article  CAS  Google Scholar 

  • Stevenson G, Andrianapolous K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    Article  CAS  Google Scholar 

  • Svennerholm L (1958) Quantitative estimation of sialic acids. Acta Chem Scand 12:547–554

    Article  CAS  Google Scholar 

  • Troy FA (1979) The chemistry and biosynthesis of selected bacterial capsular polymers. Annu Rev Microbiol 33:519–560

    Article  CAS  Google Scholar 

  • Vimr ER, Troy FA (1985) Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 164:845–853

    Article  CAS  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. José María Luengo for the critical revision of the manuscript. N. Navasa and M. Arcos were recipients of fellowships from University of León (N.N.) and Ministerio de Educación y Ciencia (M.A.). This work was supported by grants from the Dirección General de Investigación (BMC2003-03575 and AGL 2007-62428) and the Junta de Castilla y León (JCyL LE44/04 and LE032A08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leandro Rodríguez-Aparicio or Miguel Ángel Ferrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navasa, N., Rodríguez-Aparicio, L., Martínez-Blanco, H. et al. Temperature has reciprocal effects on colanic acid and polysialic acid biosynthesis in E. coli K92. Appl Microbiol Biotechnol 82, 721–729 (2009). https://doi.org/10.1007/s00253-008-1840-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1840-4

Keywords

Navigation