Skip to main content
Log in

Construction of an Escherichia coli to Bacillus thuringiensis shuttle vector for large DNA fragments

  • Methods
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Shuttle vectors for Bacillus thuringiensis or Bacillus cereus usually cannot hold fragments larger than 20 kb. With the development of genome research, shuttle vectors with higher loading capacity are necessary. We constructed an Escherichia coli to B. thuringiensis shuttle vector, pEMB0557, with a large loading capacity. This vector incorporated the ori60 replicon from B. thuringiensis subsp. kurstaki YBT-1520, erythromycin resistance (B. thuringiensis), and chloromycetin resistance (E. coli) genes. A bacterial artificial chromosome library of B. thuringiensis strain CT-43 was constructed and pEMB0557 was able to accommodate at least a 70-kb DNA fragment. Simultaneously, the cry1B gene on a 40-kb fragment could express a 140-kDa protein in plasmid-cured B. thuringiensis BMB171. Due to its high capacity and utility in expressing exogenous genes, pEMB0557 will be useful in cloning (especially silencing genes) and expressing large DNA fragments (e.g., gene clusters) in B. thuringiensis. Plasmid pEMB0557 provides a new tool for B. thuringiensis genome or B. cereus group research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrup L, Damgaard J, Wassermann K (1993) Mobilization of small plasmids in Bacillus thuringiensis subsp. israelensis is accompanied by specific aggregation. J Bacteriol 175:6530–6536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119

    CAS  PubMed  Google Scholar 

  • Baum JA, Coyle DM, Gilbert MP, Jany CS, Burke C (1990) Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol 56:3420–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgouin C, Delecluse A, de la Torre F, Szulmajster J (1990) Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Appl Environ Microbiol 56:340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Nicholls C, Earp DJ, Hodgman TC, Ellar DJ (1990) The construction of Bacillus thuringiensis strains expressing novel entomocidal δ-endotoxin combinations. Biochem J 270:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunny GM, Lee LN, LeBlanc DJ (1991) Improved electroporation and cloning vector system for Gram-positive bacteria. Appl Environ Microbiol 57:1194–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamel PH, Piot JC (1992) Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids. Gene 120:17–26

    Article  CAS  PubMed  Google Scholar 

  • Gleave AP, Williams R, Hedges RJ (1993) Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of cryV-like insecticidal protein genes and characterization of a cryV gene cloned from B. thuringiensis subsp. kurstaki. Appl Environ Microbiol 59:1683–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffitts JS, Whitacre JL, Stevens DE, Aroian RV (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293:860–864

    Article  CAS  PubMed  Google Scholar 

  • Guerout-Fleury AM, Shazand K, Frandsen N, Stragier P (1993) Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167:335–336

    Article  Google Scholar 

  • Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl Environ Microbiol 74:6997–7001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, O’Sullivan DJ (2006) Sequence analysis of two cryptic plasmids from Bifidobacterium longum DJO10A and construction of a shuttle cloning vector. Appl Environ Microbiol 72:527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lertcanawanichakul M, Wiwat C (2000) Improved shuttle vector for expression of chitinase gene in Bacillus thuringiensis. Lett Appl Microbiol 31:123–128

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang C, Liu Z, Li F, Yu Z (2000) Screening of acrystalliferous mutants from Bacillus thuringiensis and their transformation properties. Wei Sheng Wu Xue Bao 40:85–90 [Article in Chinese]

    CAS  PubMed  Google Scholar 

  • Luo M, Wing RA (2003) An improved method for plant BAC library construction. Methods Mol Biol 236:3–20

    CAS  PubMed  Google Scholar 

  • Marusyk R, Sergeant A (1980) A simple method for dialysis of small-volume samples. Analytical Biochem 105:403–404

    Article  CAS  Google Scholar 

  • Mesrati LA, Tounsi S, Jaoua S (2005) Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiol Lett 244:353–358

    Article  CAS  PubMed  Google Scholar 

  • Montes-Horcasitas C, Ruiz-Medrano R, Magana-Plaza I, Silva LG, Herrera-Martinez A, Hernandez-Montalvo L, Xoconostle-Cazares B (2004) Efficient transformation of Cellulomonas flavigena by electroporation and conjugation with Bacillus thuringiensis. Curr Microbiol 49:428–432

    Article  CAS  PubMed  Google Scholar 

  • Niu D, Wang Z (2007) Development of a pair of bifunctional expression vectors for Escherichia coli and Bacillus licheniformis. J Ind Microbiol Biotechnol 34:357–362

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Luo Y, Guo S, Zeng H, Ju S, Yu Z, Sun M (2009) Elaboration of an electroporation protocol for larger plasmids and wild-type strains in Bacillus thuringiensis. J Appl Microbiol (in press)

  • Pósfai G, Plunkett G III, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    Article  PubMed  Google Scholar 

  • Pouwels PH, Leer RJ (1993) Genetics of lactobacilli: plasmids and gene expression. Antonie van Leeuwenhoek 64:85–107

    Article  PubMed  Google Scholar 

  • Rondon MR, RaVel SJ, Goodman RM, Handelsman J (1999) Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc Natl Acad Sci USA 96:6451–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1997) A recombinase mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Mirobiol 63:779–784

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Liu Z, Yu Z (2001) Effects of the 20-kilodalton helper protein on Cry1Ac production and spore formation in Bacillus thuringiensis. Appl Environ Microbiol 67:5362–5369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivakumar AG, Vanags RI, Wilcox DR, Katz L, Vary PS, Fox JL (1989) Gene dosage effect on the expression of the delta-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis and Bacillus megaterium. Gene 79:21–31

    Article  CAS  PubMed  Google Scholar 

  • Stassi DL, Lacks SA (1982) Effect of strong promoters on the cloning in Escherichia coli of DNA fragments from Streptococcus pneumoniae. Gene 20:359–366

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Liu Z, Yu Z (2000) Characterization of the insecticidal crystal protein genes of Bacillus thuringiensis YBT-1520. Wei Sheng Wu Xue Bao 40:365–371 [Article in Chinese]

    CAS  PubMed  Google Scholar 

  • Taylor MP, Esteban CD, Leak DJ (2008) Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60:45–52

    Article  CAS  PubMed  Google Scholar 

  • Van der Auwera GA, Andrup L, Mahillon J (2005) Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 6:103–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Hi-Tech Research and Development Project (863) of China (2006AA02Z174, 2006AA03A243), National Basic Research Program (973) of China (2009CB118902) and National Natural Science Foundation of China (30400003). We thank Dr. Meizhong Luo for kindly providing pBelloBAC11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Peng, D., Luo, Y. et al. Construction of an Escherichia coli to Bacillus thuringiensis shuttle vector for large DNA fragments. Appl Microbiol Biotechnol 82, 765–772 (2009). https://doi.org/10.1007/s00253-008-1854-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1854-y

Keywords

Navigation