Skip to main content

Advertisement

Log in

Control of biofilm formation by poly-ethylene-co-vinyl acetate films incorporating nisin

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of poly-ethylene-co-vinyl acetate (EVA) films incorporating different concentrations (0.1%, 0.5% and 1%) of nisin on the biofilm-forming ability of Listeria monocytogenes ATCC 7644, Staphylococcus aureus 815 and Staphylococcus epidermidis ATCC 35984. Nisin was incorporated into two grades of EVA (EVA14 and EVA28) in the melt during a common film-blowing operation. The efficacy of EVA/nisin films was evaluated by biofilm biomass measurements and Live/Dead staining in combination with fluorescence microscopy. In order to evaluate whether the nisin incorporation could modify the film surface properties, contact angle measurements and scanning electron microscopy were performed. The results revealed the efficacy of EVA14/nisin films in reducing biofilm formation on their surfaces with more evident effect for S. epidermidis than L. monocytogenes and S. aureus strains. In contrast, EVA28/nisin films showed unsatisfactory activity. Fluorescence microscopy confirmed poor biofilm formation on EVA14/nisin films, also characterised by the presence of dead cells. The data presented in this study offer new potential applications for developing strategies aimed to improve the effect of antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abee T, Rombouts FM, Hugenholtz J, Guihard G, Letellier L (1994) Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl Environ Microbiol 60:1962–1968

    CAS  Google Scholar 

  • Arnold RR, Wei HH, Simmons E, Tallury P, Barrow DA, Kalachandra S (2008) Antimicrobial activity and local release characteristics of chlorhexidine diacetate loaded within the dental copolymer matrix, ethylene vinyl acetate. J Biomed Mat Res Part B: Appl Biomat 86B:506–513

    Article  CAS  Google Scholar 

  • Barnes LM, Lo MF, Adams MR, Chamberlain AHL (1999) Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl Environ Microbiol 65:4543–4548

    CAS  Google Scholar 

  • Blanco AR, Sudano-Roccaro A, Spoto GC, Nostro A, Rusciano D (2005) Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob Agents Ch 49:4339–4343

    Article  CAS  Google Scholar 

  • Bower CK, McGuire J, Daeschel MA (1995) Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces. Appl Environ Microbiol 61:992–997

    CAS  Google Scholar 

  • Brumfitt W, Salton MRJ, Hamilton-Miller JMT (2002) Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother 50:731–734

    Article  CAS  Google Scholar 

  • Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J (2005) Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol 156:506–517

    Article  CAS  Google Scholar 

  • Chan WC, Leyland M, Clark J, Dodd HM, Lian LY, Gasson MJ, Bycroft BW, Roberts GCK (1996) Structure-activity relationships in the peptide antibiotic nisin: antibacterial activity of fragments of nisin. FEBS Lett 390:129–132

    Article  CAS  Google Scholar 

  • Chi-Zhang Y, Yam KL, Chikindas ML (2004) Effective control of Listeria monocytogenes by combination of nisin formulated and slow released into a broth system. Int J Food Microbiol 90:15–22

    Article  CAS  Google Scholar 

  • Coma V, Sebti I, Pardon P, Deschamps A, Pichavant FH (2001) Antimicrobial edile packaging based on cellulosic ethers, fatty acids and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. J Food Prot 64:470–475

    CAS  Google Scholar 

  • Cutter CN, Willett JL, Siragusa GR (2001) Improved antimicrobial activity of nisin-incorporated polymer films by formulation change and addition of food grade chelator. Lett Appl Microbiol 33:325–328

    Article  CAS  Google Scholar 

  • Delves-Broughton J, Gasson MJ (1994) Nisin. Natural antimicrobial system in food preservation. CAB International, Wallingford, UK

  • Di Stefano A, D’Aurizio E, Trubiani O, Grande R, Di Campli E, Di Giulio M, Di Bartolomeo S, Sozio P, Iannitelli A, Nostro A, Cellini L (2009) Viscoelastic properties of Staphylococcus aureus and Staphylococcus epidermidis mono-microbial biofilms. Microbial Biotechnology 2:634–641

    Article  Google Scholar 

  • Doyle R (2000) Contribution of the hydrophobic effect to microbial infection. Microb Infect 2:391–400

    Article  CAS  Google Scholar 

  • Ercolini D, La Storia A, Villani F, Mauriello G (2006) Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J Appl Microbiol 100:765–772

    Article  CAS  Google Scholar 

  • Guerra NP, Araujo AB, Barrera AM, Agrasar AT, Macias CI, Carbacllo J, Pastrana L (2005) Antimicrobial activity of nisin adsorbed to surfaces commonly used in food industry. J Food Prot 68:1012–1019

    CAS  Google Scholar 

  • Guiga W, Galland S, Peyrol E, Degraeve P, Carnet-Pantiez A, Sebti I (2009) Antimicrobial plastic film: physico-chemical characterization and nisin desorption modelling. Inn Food Sci Emerg Technol 10:203–207

    Article  CAS  Google Scholar 

  • Harvey J, Keenan KP, Gilmour A (2007) Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol 24:380–392

    Article  CAS  Google Scholar 

  • Higashi JM, Wang IW, Shlaes DM, Anderson JM, Marchamt RE (1998) Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. J Biomed Mater Res 39:341–350

    Article  CAS  Google Scholar 

  • Hogt AH, Dankert J, Feijen J (1986) Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers. J Biomed Mater Res 20:533–545

    Article  CAS  Google Scholar 

  • Ji J, Zhang W (2009) Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. J Biomed Mater Res 88:448–453

    Article  Google Scholar 

  • Jin T, Zhang H (2008) Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci 73:127–134

    Article  Google Scholar 

  • Jin T, Liu L, Zhang H, Hicks K (2009) Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. Int J Food Sci Technol 44:322–329

    Article  CAS  Google Scholar 

  • Joerger RD (2007) Antimicrobial films for food applications: an analysis of quantitative results. Packag Technol Sci 20:231–273

    Article  CAS  Google Scholar 

  • Kim YM, An DS, Park HJ, Park JM, Lee DS (2002) Properties of nisin-incorporated polymer coatings as antimicrobial packaging materials. Packag Technol Sci 15:247–254

    Article  CAS  Google Scholar 

  • Kirwan MJ, Strawbridge JW (2003) Plastics in food packaging. In: Coles R, McDowell D, Kirwan MJ (eds) Food packaging technology. Blackwell Publishing Ltd, London, pp 174–240

    Google Scholar 

  • La Storia A, Ercolini D, Marinello F, Mauriello G (2008) Characterization of bacteriocin-coated antimicrobial polyethylene films by atomic force microscopy. J Food Sci 73:48–54

    Article  Google Scholar 

  • Le Magrex-Debar E, Lemoine J, Gellé MP, Jacquelin LF, Choisy C (2000) Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J Food Microbial 55:239–243

    Article  Google Scholar 

  • Lee CH, An DS, Park HJ, Lee DS (2003) Wide-spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Packag Technol Sci 16:99–106

    Article  CAS  Google Scholar 

  • Lee CH, An DS, Lee SC, Park HJ, Lee DS (2004) A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin and α-tocopherol. J Food Engin 62:323–329

    Article  Google Scholar 

  • Liu LS, Finkenstadt VL, Liu CK, Jin T, Fishman ML, Hicks KB (2007) Preparation of poly(lactic acid) and pectin composite films intended for applications in antimicrobial packaging. J Appl Polym Sci 106:801–810

    Article  CAS  Google Scholar 

  • Liu L, Jin T, Coffin DR, Hicks KB (2009) Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and Nisaplin in the presence of Plasticizers. J Agric Food Chem 57:8392–8398

    Article  CAS  Google Scholar 

  • Mafu AA, Roy D, Goulet J, Magny P (1990) Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J Food Prot 53:742–746

    CAS  Google Scholar 

  • Mah TC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  Google Scholar 

  • Mauriello G, Ercolini D, La Storia A, Casaburi A, Villani F (2004) Development of polyethene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J Appl Microbiol 97:314–322

    Article  CAS  Google Scholar 

  • Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41:464–469

    Article  CAS  Google Scholar 

  • Neetoo H, Ye M, Chen H (2007) Effectiveness and stability of plastic films coated with nisin for inhibition of Listeria monocytogenes. J Food Prot 70:1267–1271

    CAS  Google Scholar 

  • Norwood DE, Gilmour A (1999) Adherence of Listeria monocytogenes strains to stainless steel coupons. J Appl Microbiol 86:576–582

    Article  CAS  Google Scholar 

  • Norwood DE, Gilmour A (2000) The growth and resistance to sodium ipochlorite of Listeria monocytogenes in a steady-state multispecies biofilm. J Appl Microbiol 88:512–520

    Article  CAS  Google Scholar 

  • Nostro A, Sudano Roccaro A, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523

    Article  CAS  Google Scholar 

  • Rieu A, Lemaître JP, Guzzo J, Pivetau P (2008) Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus. Int J Food Microbiol 126:76–82

    Article  CAS  Google Scholar 

  • Scaffaro R, Botta L, La Mantia FP (2009a) Preparation and characterization of polyolefin-based nanocomposite blown films for agricultural applications. Macromol Mater Engin 294:445–454

    Article  CAS  Google Scholar 

  • Scaffaro R, Morreale M, Lo Re G, La Mantia FP (2009b) Degradation of mMater-Bi®/wood flour biocomposites in active sewage sludge. Polym Degrad Stab 94:1220–1229

    Article  CAS  Google Scholar 

  • Scaffaro R, Botta L, Marineo S, Puglia AM (2009c) Incorporation of nisin in poly (ethylene-co-vinyl acetate) films by melt processing: a study on the antimicrobial properties and the bacteriocin release. LWT (in press)

  • Schlegelová J, Babák V, Holasová M, Dendis M (2008) The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants. Folia Microbiol 53:500–504

    Article  Google Scholar 

  • Siragusa GR, Cutter CN, Willett JL (1999) Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiol 16:229–235

    Article  CAS  Google Scholar 

  • Smith K, Hunter IS (2008) Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol 57:966–973

    Article  CAS  Google Scholar 

  • Stepanović S, Cirković I, Ranin L, Svabić-Vlahović M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432

    Article  Google Scholar 

  • Tai YC, McGuire J, Neff JA (2008) Nisin antimicrobial activity and structural characteristics at hydrophobic surfaces coated with the PEO–PPO–PEO triblock surfactant Pluronic® F108. J Colloid Interface Sci 322:104–111

    Article  CAS  Google Scholar 

  • Tang H, Cao T, Liang X, Wang A, Salley SO, McAllister J, Ng KY (2009) Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. J Biomed Mater Res A 88:454–463

    Google Scholar 

  • Wiedemann I, Breukink I, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Nostro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nostro, A., Scaffaro, R., Ginestra, G. et al. Control of biofilm formation by poly-ethylene-co-vinyl acetate films incorporating nisin. Appl Microbiol Biotechnol 87, 729–737 (2010). https://doi.org/10.1007/s00253-010-2598-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2598-z

Keywords

Navigation