Skip to main content

Advertisement

Log in

Structural determinants of antimicrobial activity in polymers which mimic host defense peptides

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antimicrobial polymers, designed to mimic the salient structural features of host defense peptides, are an emerging class of materials with potential for applications to combat infectious disease. Because the putative mode of action relies on physiochemical parameters of peptides such as hydrophobicity and cationic charge, rather than specific receptor-mediated interactions, the activity of the polymers can be modulated by tuning key structural parameters. While a wide diversity of chemical structures have been reported as antimicrobial polymers, a precise understanding of the structural factors which control their activity is a subject of current investigations. In this mini-review, we will outline the design principles that have been developed so far to fine tune the activity of these antimicrobial agents. The roles played by specific structural features such as cationic charge, hydrophobicity, and molecular weight will be discussed. Future directions of the field and potential challenges will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Badri ZM, Som A, Lyon S, Nelson CF, Nusslein K, Tew GN (2008) Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules 9:2805–2810

    Article  CAS  Google Scholar 

  • Bielawski CW, Grubbs RH (2007) Living ring-opening metathesis polymerization. Prog Polym Sci 32:1–29

    Article  CAS  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    Article  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  Google Scholar 

  • Chen CZS, Cooper SL (2000) Recent advances in antimicrobial dendrimers. Adv Mater 12:843–846

    Article  CAS  Google Scholar 

  • Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  • Choi S, Isaacs A, Clements D, Liu DH, Kim H, Scott RW, Winkler JD, DeGrado WF (2009) De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers. Proc Natl Acad Sci USA 106:6968–6973

    Article  CAS  Google Scholar 

  • Colak S, Nelson CF, Nusslein K, Tew GN (2009) Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity. Biomacromolecules 10:353–359

    Article  CAS  Google Scholar 

  • Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. BBA-Biomembranes 1462:71–87

    Article  CAS  Google Scholar 

  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501:146–150

    Article  CAS  Google Scholar 

  • Epand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, Epand RM (2008) Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J Mol Biol 379:38–50

    Article  CAS  Google Scholar 

  • Eren T, Som A, Rennie JR, Nelson CF, Urgina Y, Nusslein K, Coughlin EB, Tew GN (2008) Antibacterial and hemolytic activities of quaternary pyridinium functionalized polynorbornenes. Macromol Chem Phys 209:516–524

    Article  CAS  Google Scholar 

  • Fischer D, Li YX, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  Google Scholar 

  • Funhoff AM, van Nostrum CF, Lok MC, Fretz MM, Crommelin DJA, Hennink WE (2004) Poly(3-guanidinopropyl methacrylate): A novel cationic polymer for gene delivery. Bioconjug Chem 15:1212–1220

    Article  CAS  Google Scholar 

  • Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN (2007) Infectious disease: Connecting innate immunity to biocidal polymers. Mater Sci Eng R Rep 57:28–64

    Article  Google Scholar 

  • Gabriel GJ, Madkour AE, Dabkowski JM, Nelson CF, Nusslein K, Tew GN (2008) Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 9:2980–2983

    Article  CAS  Google Scholar 

  • Ge YG, MacDonald DL, Holroyd KJ, Thornsberry C, Wexler H, Zasloff M (1999) In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother 43:782–788

    CAS  Google Scholar 

  • Gelman MA, Weisblum B, Lynn DM, Gellman SH (2004) Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett 6:557–560

    Article  CAS  Google Scholar 

  • Hamuro Y, Schneider JP, DeGrado WF (1999) De novo design of antibacterial beta-peptides. J Am Chem Soc 121:12200–12201

    Article  CAS  Google Scholar 

  • Hancock REW, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  CAS  Google Scholar 

  • Hawker CJ, Wooley KL (2005) The convergence of synthetic organic and polymer chemistries. Science 309:1200–1205

    Article  CAS  Google Scholar 

  • Ikeda T, Tazuke S, Suzuki Y (1984) Biologically active polycations. 4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromol Chem Macromol Chem Phys 185:869–876

    CAS  Google Scholar 

  • Ilker MF, Nusslein K, Tew GN, Coughlin EB (2004) Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc 126:15870–15875

    Article  CAS  Google Scholar 

  • Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107:5813–5840

    Article  CAS  Google Scholar 

  • Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  CAS  Google Scholar 

  • Kolonko EM, Kiessling LL (2008) A polymeric domain that promotes cellular internalization. J Am Chem Soc 130:5626

    Article  CAS  Google Scholar 

  • Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026

    Article  CAS  Google Scholar 

  • Kugler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiol Sgm 151:1341–1348

    Article  CAS  Google Scholar 

  • Kuroda K, DeGrado WF (2005) Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc 127:4128–4129

    Article  CAS  Google Scholar 

  • Kuroda K, Caputo GA, DeGrado WF (2009) The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem Eur J 15:1123–1133

    CAS  Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Article  CAS  Google Scholar 

  • Lienkamp K, Madkour AE, Musante A, Nelson CF, Nusslein K, Tew GN (2008) Antimicrobial polymers prepared by ROMP with unprecedented selectivity: A molecular construction kit approach. J Am Chem Soc 130:9836–9843

    Article  CAS  Google Scholar 

  • Lienkamp K, Kumar KN, Som A, Nusslein K, Tew GN (2009) "Doubly selective" antimicrobial polymers: How do they differentiate between bacteria? Chem Eur J 15:11710–11714

    Article  CAS  Google Scholar 

  • Madkour AE, Dabkowski JA, Nusslein K, Tew GN (2009) Fast disinfecting antimicrobial surfaces. Langmuir 25:1060–1067

    Article  CAS  Google Scholar 

  • Marcos JF, Gandia M (2009) Antimicrobial peptides: to membranes and beyond. Expert Opin Drug Discovery 4:659–671

    Article  CAS  Google Scholar 

  • Marr AK, Gooderham WJ, Hancock REW (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  CAS  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. BBA-Rev Biomembranes 1376:391–400

    CAS  Google Scholar 

  • Moreau E, Domurado M, Chapon P, Vert M, Domurado D (2002) Biocompatibility of polycations: In vitro agglutination and lysis of red blood cells and in vivo toxicity. J Drug Target 10:161–173

    Article  CAS  Google Scholar 

  • Mowery BP, Lee SE, Kissounko DA, Epand RF, Epand RM, Weisblum B, Stahl SS, Gellman SH (2007) Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc 129:15474

    Google Scholar 

  • Mowery BP, Lindner AH, Weisblum B, Stahl SS, Gellman SH (2009) Structure−activity relationships among random Nylon-3 copolymers that mimic antibacterial host-defense peptides. J Am Chem Soc 131:9735–9745

    Article  CAS  Google Scholar 

  • Novak BM, Risse W, Grubbs RH (1992) The development of well-defined catalysts for ring-opening metathesis polymerizations (ROMP). Adv Polym Sci 102:47–72

    CAS  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  CAS  Google Scholar 

  • Palermo E, Kuroda K (2009) Chemical structure of cationic groups in polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 10:1416–1428

    Article  CAS  Google Scholar 

  • Palermo EF, Sovadinova I, Kuroda K (2009) Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules 10:3098–3107

    Article  CAS  Google Scholar 

  • Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure−activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97:8245–8250

    Article  CAS  Google Scholar 

  • Patch JA, Barron AE (2003) Helical peptoid mimics of magainin-2 amide. J Am Chem Soc 125:12092–12093

    Article  CAS  Google Scholar 

  • Porter EA, Wang X, Lee HS, Weisblum B, Gellman SH (2000) Non-haemolytic beta-amino-acid oligomers (vol 404, pg 565, 2000). Nature 405:298–298

    CAS  Google Scholar 

  • Ryser HJP (1967) A membrane effect of basic polymers dependent on molecular size. Nature 215:934

    Google Scholar 

  • Sambhy V, Peterson BR, Sen A (2008) Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem Int Ed 47:1250–1254

    Article  CAS  Google Scholar 

  • Schmitt MA, Weisblum B, Gellman SH (2004) Unexpected relationships between structure and function in alpha, beta-peptides: Antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc 126:6848–6849

    Article  CAS  Google Scholar 

  • Sellenet PH, Allison B, Applegate BM, Youngblood JP (2007) Synergistic activity of hydrophilic modification in antibiotic polymers. Biomacromolecules 8:19–23

    Article  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. BBA-Biomembranes 1462:55–70

    Article  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  Google Scholar 

  • Shai Y, Oren Z (2001) From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22:1629–1641

    Article  CAS  Google Scholar 

  • Som A, Tew GN (2008) Influence of lipid composition on membrane activity of antimicrobial phenylene ethynylene oligomers. J Phys Chem B 112:3495–3502

    Article  CAS  Google Scholar 

  • Stratton TR, Rickus JL, Youngblood JP (2009) In vitro biocompatibility studies of antibacterial quaternary polymers. Biomacromolecules 10:2550–2555

    Article  CAS  Google Scholar 

  • Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160:91–96

    Article  CAS  Google Scholar 

  • Tashiro T (2001) Antibacterial and bacterium adsorbing macromolecules. Macromol Mater Eng 286:63–87

    Article  CAS  Google Scholar 

  • Tew GN, Scott RW, Klein ML, Degrado WF (2010) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39

    Article  CAS  Google Scholar 

  • Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985

    Article  CAS  Google Scholar 

  • Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237:377–384

    CAS  Google Scholar 

  • Unger F, Wittmar M, Kissel T (2007) Branched polyesters based on poly vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol -graft-poly(D, L-lactide-co-glycolide): Effects of polymer structure on cytotoxicity. Biomaterials 28:1610–1619

    Article  CAS  Google Scholar 

  • Wade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG, Merrifield RB (1990) All-D amino acid containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 87:4761–4765

    Article  CAS  Google Scholar 

  • Wang JS, Matyjaszewski K (1995) Controlled living radical polymerization—Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28:7901–7910

    Article  CAS  Google Scholar 

  • Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–472

    Article  CAS  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin—Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Kuroda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palermo, E.F., Kuroda, K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl Microbiol Biotechnol 87, 1605–1615 (2010). https://doi.org/10.1007/s00253-010-2687-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2687-z

Keywords

Navigation