Skip to main content

Advertisement

Log in

Developments and perspectives of photobioreactors for biofuel production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of biofuels from microalgae requires efficient photobioreactors in order to meet the tight constraints of energy efficiency and economic profitability. Current cultivation systems are designed for high-value products rather than for mass production of cheap energy carriers. Future bioreactors will imply innovative solutions in terms of energy efficiency, light and gas transfer or attainable biomass concentration to lower the energy demand and cut down production costs. A new generation of highly developed reactor designs demonstrates the enormous potential of photobioreactors. However, a net energy production with microalgae remains challenging. Therefore, it is essential to review all aspects and production steps for optimization potential. This includes a custom process design according to production organism, desired product and production site. Moreover, the potential of microalgae to synthesize valuable products additionally to the energetic use can be integrated into a production concept as well as waste streams for carbon supply or temperature control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acien Fernandez FG, Sevilla JMF, Perez JAS, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732

    Article  Google Scholar 

  • Buehner MR, Young PM, Willson B, Rausen D, Schoonover R, Babbitt G, Bunch S (2009) Microalgae growth modeling and control for a vertical flat panel photobioreactor. Am Control Conf 1-9:2301–2306

    Article  Google Scholar 

  • Camacho Rubio F, Miron AS, Garcia MCC, Camacho FG, Molina Grima E, Chisti Y (2004) Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem Eng Sci 59(20):4369–4376

    Article  CAS  Google Scholar 

  • Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943

    Article  Google Scholar 

  • Chisti Y (2008a) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  Google Scholar 

  • Chisti Y (2008b) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819

    Article  CAS  Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Article  Google Scholar 

  • Earthrise-Nutritionals (2009) Retrieved 02/24, 2010, from http://www.earthrise.com/farm.html

  • Falkowski PG, Owens TG (1978) Effects of light-intensity on photosynthesis and dark respiration in 6 species of marine-phytoplankton. Mar Biol 45(4):289–295

    Article  CAS  Google Scholar 

  • Fischer K, Rahn R (2004) Hefe und Hefeextrakt. Lebensmitteltechnologie: biotechnologische, chemische, mechanische und thermische Verfahren der Lebensmittelverarbeitung. R. Heiss, Springer-Verlag, Berlin Heidelberg, pp 418–429

    Google Scholar 

  • Fleck-Schneider P (2004) Prophyridium purpureum: Strukturierte Modellbildung und experimentelle Validierung der Stoffwechselreaktion auf Hell-Dunkel-Zyklen. Faculty of Chemical Engineering. Karlsruhe, Universität Fridericiana. PhD

  • Gaffron H, Rubin J (1942) Fermantative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Gallert C, Winter J (2002) Solid and liquid residues as raw materials for biotechnology. Naturwissenschaften 89:483–496

    Article  CAS  Google Scholar 

  • Gasljevic K, Hall KA, Oakes S, Chapman DJ, Matthys EF (2009) Increased production of extracellular polysaccharide by Porphyridium cruentum immobilized in foam sheets. Eng Life Sci 9(6):479–489

    Article  CAS  Google Scholar 

  • Geresh S, Malis SA (1991) The extracellular polysaccharides of the red microalgae—chemistry and rheology. Bioresour Technol 38(2–3):195–201

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726

    Article  CAS  Google Scholar 

  • Hall DO, Acien Fernandez FG, Guerrero EC, Rao KK, Molina Grima E (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73

    Article  CAS  Google Scholar 

  • Halldal P, French CS (1958) Algal growth in crossed gradients of light intensity and temperature. Plant Physiol 33(4):249–252

    Article  CAS  Google Scholar 

  • Harris GP, Piccinin BB (1983) Phosphorus limitation and carbon metabolism in a unicellular alga—interaction between growth-rate and the measurement of net and gross photosynthesis. J Phycol 19(2):185–192

    Article  CAS  Google Scholar 

  • Holland L, Siddall G (1958) Heat-reflecting windows using gold and bismuth oxide films. Br J Appl Phys 9(9):359–361

    Article  CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  Google Scholar 

  • IEA (2009) Key world energy statistics 2009

  • Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H-2 production in engineered green algal cells. J Biol Chem 280(40):34170–34177

    Article  CAS  Google Scholar 

  • Langner U, Jakob T, Stehfest K, Wilhelm C (2009) An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Plant Cell Environ 32(3):250–258

    Article  CAS  Google Scholar 

  • Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  CAS  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) Co2 fixation from the flue-gas on coal-fired thermal power-plant by microalgae. Energy Convers Manage 36(6–9):717–720

    Article  CAS  Google Scholar 

  • Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–135

    Article  CAS  Google Scholar 

  • Merchuk JC, Rosenblat Y, Berzin I (2007) Fluid flow and mass transfer in a counter-current gas-liquid inclined tubes photo-bioreactor. Chem Eng Sci 62(24):7414–7425

    Article  CAS  Google Scholar 

  • Molina Grima E, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814

    Article  CAS  Google Scholar 

  • Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of Sox and Nox. Appl Biochem Biotechnol 28–9:877–886

    Article  Google Scholar 

  • Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon-dioxide fixation by microalgae photosynthesis using actual flue-gas discharged from a boiler. Appl Biochem Biotechnol 39:643–653

    Article  Google Scholar 

  • Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131(3):276–285

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  • Proviron (2010) “Proviron.” from http://www.proviron.com/algae/

  • Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):349–350

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Rossignol N, Vandanjon L, Jaouen P, Quemeneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultra-filtration. Aquacultural Eng 20(3):191–208

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res

  • Sierra E, Acien FG, Fernandez JM, Garcia JL, Gonzalez C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1–3):136–147

    Article  CAS  Google Scholar 

  • Solix-Biofuels (2009) 2010, from http://www.solixbiofuels.com/content/faq

  • Sorokin C, Krauss RW (1958) The effects of light intensity on the growth rates of green algae. Plant Physiol 33(2):109–113

    Article  CAS  Google Scholar 

  • Steiner U (2008) Biofuel’s cost explosion necessitates adaption of process concepts European White Biotechnology Summit. Frankurt, Germany

    Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28(2):126–128

    Article  CAS  Google Scholar 

  • Subitec. 2010, from http://www.subitec.com/mikroalgen-technologie/produktpalette.html

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162

    CAS  Google Scholar 

  • Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. Università degli Studi di Firenze

  • Weyer KM, Bush DR, Darzins A, Willson B (2010) Theoretical maximum algal oil production. Bioenergy Res 3(2):204–213

    Article  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    Article  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  CAS  Google Scholar 

  • Zijffers JWF, Janssen M, Tramper J, Wijffels RH (2008) Design process of an area-efficient photobioreactor. Mar Biotechnol 10(4):404–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Posten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morweiser, M., Kruse, O., Hankamer, B. et al. Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87, 1291–1301 (2010). https://doi.org/10.1007/s00253-010-2697-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2697-x

Keywords

Navigation