Skip to main content
Log in

Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The credo of every scientist working in the field of applied science is to transfer knowledge “from science to market,” a process that combines (1) science (fundamental discoveries and basic research) with (2) technology development (performance assessment and optimization) and (3) technology transfer (industrial application). Over the past 7 years, we have intensively investigated the potential of the white rot fungus, Physisporinus vitreus, for engineering value-added wood products. Because of its exceptional wood degradation pattern, i.e., selective lignification without significant wood strength losses and a preferential degradation of bordered pit membranes, it is possible to use this fungus under controlled conditions to improve the acoustic properties of tonewood (i.e., “mycowood”) as well as to enhance the uptake of preservatives and wood modification substances in refractory wood species (e.g., Norway spruce), a process known as “bioincising.” This minireview summarizes the research that we have performed with P. vitreus and critically discusses the challenges encountered during the development of two distinct processes for engineering value-added wood products. Finally, we peep into the future potential of the bioincising and mycowood processes for additional applications in the forest and wood industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anagnost SE (2007) Wood in the built environment: conditions for mold and decay. In: Yang CS, Heinsohn P (eds) Sampling and analysis of indoor microorganisms. Wiley, Hoboken, pp 155–178

    Chapter  Google Scholar 

  • Baldrian P (2006) Fungal laccases: occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Barlow CY, Edwards PP, Millward GR, Raphael RA, Rubio DJ (1988) Wood treatment used in Cremonese instruments. Nature 332:313

    Article  CAS  Google Scholar 

  • Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108

    Article  CAS  Google Scholar 

  • Bauch J, Liese W, Berndt H (1970) Biological investigations for the improvement of the permeability of softwoods. Holzforschung 24:199–205

    Article  Google Scholar 

  • Bruce A, Highley TL (1991) Control of growth of wood decay basidiomycetes by Trichoderma spp. and other potentially antagonistic fungi. Forest Prod J 41:63–67

    CAS  Google Scholar 

  • Bucur V (2006) Acoustics of wood, 2nd edn. Springer, Berlin, Springer Series in Wood Science

    Google Scholar 

  • Burckle L, Grissino-Mayer HD (2003) Stradivaris, violins, tree rings, and the Maunder Minimum: a hypothesis. Dendrochronologia 21:41–45

    Article  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

    Article  CAS  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    CAS  Google Scholar 

  • Deflorio G, Hein S, Fink S, Spiecker H, Schwarze FWMR (2005) The application of wood decay fungi to enhance annual ring detection in three diffuse-porous hardwoods. Dendrochronologia 22:123–130

    Article  Google Scholar 

  • Dill I, Kraepelin G (1986) Palo podrido: model for extensive delignification of wood by Ganoderma applanatum. Appl Environ Microbiol 52:1305–1312

    CAS  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2252

    Article  CAS  Google Scholar 

  • Fuhr M, Stührk C, Schwarze FWMR, Schubert M, Herrmann HJ (2010) Modelling hyphal growth of the bioincising fungus Physisporinus vitreus. In: International Research Group on Wood Preservation, IRG/WP. Biarritz, France, pp 10–710

    Google Scholar 

  • Graddy K, Margolis P (2010) Fiddling with value: violins as an investment? Econ Inq. doi:10.1111/j.1465-7295.2010.00269.x

  • Griffin DM (1977) Water potential and wood-decay fungi. Annu Rev Phytopathol 15:319–329

    Article  Google Scholar 

  • Gug R (1991) Choosing resonance wood. Strad 102:60–64

    Google Scholar 

  • Hernandez R, Winandy JE (2005) Evaluation of a reduced section modulus model for determining the effects of incising on bending strength and stiffness of structural lumber. Forest Prod J 55:57–65

    Google Scholar 

  • Highley TL (1997) Control of wood decay by Trichoderma (Gliocladium) virens. I. Antagonistic properties. Mater Org 31:79–89

    Google Scholar 

  • Highley TL, Padmanabha HSA, Howell CR (1997) Control of wood decay by Trichoderma (Gliocladium) virens. II: antibiosis. Mater Org 31:157–166

    CAS  Google Scholar 

  • Ihssen J, Schubert M, Schwarze FWMR, Thöny-Meyer L (2011) Efficient production of Al(OH)3-immobilized laccase with a Heterobasidion annosum strain selected by microplate screening. J Appl Microbiol 110:924–934

    CAS  Google Scholar 

  • Johnson BR (1979) Permeability changes induced in three western conifers by selective bacterial inoculation. Wood Fiber 11:10–21

    Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  • Kudanga T, Prasetyo EN, Sipila J, Eberl A, Nyanhongo GS, Guebitz GM (2009) Coupling of aromatic amines onto syringylglycerol beta-guaiacylether using Bacillus SF spore laccase: a model for functionalization of lignin-based materials. J Mol Catal B Enzym 61:143–149

    Article  CAS  Google Scholar 

  • Lehringer C (2011) Permeability improvement of Norway spruce wood with the white rot fungus Physisporinus vitreus. PhD thesis, Georg-August-University, Göttingen. http://webdoc.sub.gwdg.de/diss/2011/lehringer/lehringer.pdf

  • Lehringer C, Arnold M, Richter K, Schubert M, Schwarze FWMR, Militz H (2009) Bioincised wood as substrate for surface modifications. In: Englund F, Hill CAS, Militz H, Segerholm BK (eds) Proceedings of the European conference on wood modification, Stockholm, pp 197–200

  • Lehringer C, Hillebrand K, Richter K, Arnold M, Schwarze FMWR, Militz H (2010) Anatomy of bioincised Norway spruce wood. Int Biodeterior Biodegrad 64:346–355

    Article  Google Scholar 

  • Lehringer C, Koch G, Adusumalli R-B, Mook WM, Richter K, Militz H (2011) Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 1: aspects of delignification and surface hardness. Holzforschung. doi:10.1515/HF.2011.021

  • Levi MP, Cowling EB (1969) Role of nitrogen in wood deterioration. VII: physiological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen. Phytopathology 59:460–468

    CAS  Google Scholar 

  • Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63:477–494

    Article  CAS  Google Scholar 

  • Majcherczyk A, Hüttermann A (1988) Bioremediation of wood treated with preservative using white-rot fungi. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 129–140

    Google Scholar 

  • Messner K, Fackler K, Lamaipis P, Gindl W, Srebotnik E, Watanabe T (2002) Biotechnological wood modification. In: Proceedings of the international symposium on wood-based materials, part 2. Vienna University, pp 45–49

  • Meyer HG (1995) A practical approach to the choice of tone wood for the instruments of the violin family. Catgut Acoust Soc J 2:9–13

    Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi: progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  CAS  Google Scholar 

  • Militz H (1993a) Der Einfluss enzymatischer Behandlungen auf die Tränkbarkeit kleiner Fichtenproben. Holz Roh Werkst 51:135–142

    Article  Google Scholar 

  • Militz H (1993b) Der Einfluss enzymatischer Behandlungen von Fichtenrund-und Schnittholz zur Verbesserung der Tränkbarkeit. Holz Roh Werkst 51:339–346

    Article  CAS  Google Scholar 

  • Nagyvary J (1988) Chemistry of Stradivarius. Chem Eng News 66:24–31

    Article  CAS  Google Scholar 

  • Nagyvary J, DiVerdi JA, Owen NL, Tolley HD (2006) Wood used by Stradivari and Guarneri. Nature 444:565

    Article  CAS  Google Scholar 

  • Nicholas DD, Thomas RJ (1968) The influence of enzymes on the structure and permeability of loblolly pine. Proc Am Wood Preserv Assoc 64:70–76

    CAS  Google Scholar 

  • Nilsson T, Daniel G, Kirk K, Obst JR (1989) Chemistry and microscopy of wood decay by some higher Ascomycetes. Holzforschung 43:11–18

    Article  CAS  Google Scholar 

  • Ono T, Norimoto M (1984) On physical criteria for the selection of wood for soundboards of musical instruments. Rheol Acta 23:652–656

    Article  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Chichester

    Google Scholar 

  • Reid ID (1983) Effects of nitrogen supplements on degradation of aspen wood lignin and carbohydrate components by Phanerochaete chrysosporium. Appl Environ Microbiol 45:830–837

    CAS  Google Scholar 

  • Richter DL, Warner JI, Stephens AL (2003) A comparison of mycorrhizal and saprotrophic fungus tolerance to creocote. Int Biodeterior Biodegrad 51:195–202

    Article  CAS  Google Scholar 

  • Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  CAS  Google Scholar 

  • Samson J, Langlois É, Lei J, Piché Y, Chênevert R (1998) Removal of 2,4,6-trinitrotoluene and 2,4-dinitrotoluene by fungi (Ceratocystis coerulescens, Lentinus lepideus and Trichoderma harzianum). Biotechnol Lett 20:355–358

    Article  CAS  Google Scholar 

  • Schleske M (1998) On the acoustical properties of violin varnish. Catgut Acoust Soc J 3:15–24

    Google Scholar 

  • Schleske M (2002a) Empirical tools in contemporary violin making: part I. Analysis of design, materials, varnish and normal modes. Catgut Acoust Soc J 4:50–64

    Google Scholar 

  • Schleske M (2002b) Empirical tools in contemporary violin making: part II: psychoacoustic analysis and use of acoustical tools. Catgut Acoust Soc J 4:83–92

    Google Scholar 

  • Schmidt O (2007) Indoor wood-decay basidiomycetes: damage, causal fungi, physiology, identification and characterization, prevention and control. Mycol Prog 6:261–279

    Article  Google Scholar 

  • Schmidt O, Liese W, Moreth U (1996) Decay of timber in a water cooling tower by the basidiomycete Physisporinus vitreus. Mater Org 30:161–177

    Google Scholar 

  • Schmidt O, Schmitt U, Moreth U, Potsch T (1997) Wood decay by the white-rotting basidiomycete Physisporinus vitreus from a cooling tower. Holzforschung 51:193–200

    Article  CAS  Google Scholar 

  • Schubert M, Schwarze FWMR (2011) Evaluation of the interspecific competitive ability of the bioincising fungus Physisporinus vitreus. J Basic Microbiol 51:80–88

    Article  CAS  Google Scholar 

  • Schubert M, Dengler V, Mourad S, Schwarze FWMR (2009a) Determination of optimal growth parameters for the bioincising fungus Physisporinus vitreus by means of response surface methodology. J Basic Microbiol 106:1734–1742

    CAS  Google Scholar 

  • Schubert M, Mourad S, Fink S, Schwarze FWMR (2009b) Ecophysiological responses of the biocontrol agent Trichoderma atroviride (T-15603.1) to combined environmental parameters. Biol Control 49:84–90

    Article  Google Scholar 

  • Schubert M, Mourad S, Schwarze FWMR (2010a) Radial basis function neural networks for modeling growth rates of the basidiomycetes Physisporinus vitreus and Neolentinus lepideus. Appl Microbiol Biotechnol 85:703–712

    Article  CAS  Google Scholar 

  • Schubert M, Mourad S, Schwarze FWMR (2010b) Statistical approach to determine the effect of combined environmental parameters on conidial development of Trichoderma atroviride (T-15603.1). J Basic Microbiol 50:570–580

    Article  CAS  Google Scholar 

  • Schubert M, Volkmer T, Lehringer C, Schwarze FWMR (2011a) Resistance of bioincised wood treated with wood preservatives to blue-stain and wood-decay fungi. Int Biodeterior Biodegrad 65:108–115

    Article  CAS  Google Scholar 

  • Schubert M, Mourad S, Schwarze FWMR (2011b) Automated image processing for quantification of blue-stain discolouration of Norway spruce wood. Wood Sci Technol 45:331–337

    Article  CAS  Google Scholar 

  • Schwarze FWMR (1995) Entwicklung und biomechanische Auswirkungen von holzzersetzenden Pilzen in lebenden Bäumen und in vitro. PhD thesis, Albert-Ludwigs-Universität Freiburg, Germany

  • Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170

    Article  Google Scholar 

  • Schwarze FWMR (2008) Diagnosis and prognosis of the development of wood decay in urban trees. ENSPEC, Melbourne

    Google Scholar 

  • Schwarze FWMR, Landmesser H (2000) Preferential degradation of pit membranes within tracheids by the basidiomycete Physisporinus vitreus. Holzforschung 54:461–462

    Article  CAS  Google Scholar 

  • Schwarze FWMR, Engels J, Mattheck C (2004) Fungal Strategies of Wood Decay in Trees. Springer Verlag, Heidelberg

  • Schwarze FWMR, Spycher M, Fink S (2008) Superior wood for violins—wood decay fungi as a substitute for cold climate. New Phytol 179:1095–1104

    Article  Google Scholar 

  • Schwarze FWMR, Landmesser H, Zgraggen B, Heeb M (2006) Permeability changes in heartwood of Picea abies and Abies alba induced by incubation with Physisporinus vitreus. Holzforschung 60:450–454

    Article  CAS  Google Scholar 

  • Sharma M, Kumar S (1979) Degradation of wood pectin bymicro-organisms. Int J Wood Preserv 1:87–90

    Google Scholar 

  • Shuen SK, Buswell JA (1992) Effect of lignin derived phenols and their methylated derivatives on the growth of Lentinus spp. Lett Appl Microbiol 15:12–14

    Article  CAS  Google Scholar 

  • Spycher M, Schwarze FWMR, Steiger R (2008) Assessment of resonance wood quality by comparing its physical and histological properties. Wood Sci Technol 42:325–342

    Article  CAS  Google Scholar 

  • Stührk C, Fuhr M, Schubert M, Schwarze FWMR (2010) Analyzing hyphal growth of the bioincising fungus Physisporinus vitreus with light-, confocal laser scanning- and synchrotron X-ray tomographic microscopy. In: International Group on Wood Preservation, IRG 1020438, Biarritz, France

  • Tschernitz JL (1973) Enzyme mixture improves creosote treatment of kiln-dried Rockey Mountain Douglas-fir. Forest Prod J 23:30–38

    CAS  Google Scholar 

  • Topham TJ, McCormick MD (2000) A dendrochronological investigation of stringed instruments of the Cremonese School (1666–1757) including “The Messiah” violin attributed to Antonio Stradivari. J Archaeol Sci 27:183–192

    Article  Google Scholar 

  • Unbehaun H, Dittler B, Kuhne G, Wagenfuhr A (2000) Investigation into the biotechnological modification of wood and its application in the wood-based material industry. Acta Biotechnol 20:305–312

    Article  CAS  Google Scholar 

  • Van Acker J, Stevens M, Rijckaert V (1995) Highly virulent wood-rotting basidiomycetes in cooling towers. In: International Research Group on Wood Preservation, IRG/WP/95-10125, Ghent

  • Wagenführ A, Pfriem A, Eichelberger K (2005a) Der Einfluss einer thermischen Modifikation von Holz auf im Musikintrumentenbau relevante Eigenschaften. Teil I: Spezielle Anatomische und Physikalische Eigenschaften. Holztechnologie 46:36–42

    Google Scholar 

  • Wagenführ A, Pfriem A, Eichelberger K (2005b) Der Einfluss einer thermischen Modifikation von Holz auf im Musikinstrumentenbau relevante Eigenschaften. Teil 2: Technologische Eigenschaften, Herstellung und Prüfung von Musikinstrumentenbauteilen. Holztechnologie 47:39–43

    Google Scholar 

  • Wegst UGK (2006) Wood for sound. Am J Bot 93:1439–1448

    Article  Google Scholar 

  • Yano H, Kajita H, Minato K (1994) Chemical treatment of wood for musical instruments. J Acoust Soc Am 96:3380–3391

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the close collaboration with following partners: BASF AG, Switzerland; International Speciality Products ISP AG, Baar, Switzerland; Böhme AG-The Wood Care Company, Liebefeld, Switzerland; Bois Ril SA, Palézieux, Switzerland; and the University of Applied Sciences HEV, Sion, Switzerland. Moreover, we express our gratitude to the CTI (Swiss Innovation Promotion Agency, grant No. 8593.1) and Swiss National Science Foundation (grant No. 205321-121701) for their sustained funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis W. M. R. Schwarze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarze, F.W.M.R., Schubert, M. Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products. Appl Microbiol Biotechnol 92, 431–440 (2011). https://doi.org/10.1007/s00253-011-3539-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3539-1

Keywords

Navigation