Skip to main content

Advertisement

Log in

Biological souring and mitigation in oil reservoirs

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Souring in oilfield systems is most commonly due to the action of sulfate-reducing prokaryotes, a diverse group of anaerobic microorganisms that respire sulfate and produce sulfide (the key souring agent) while oxidizing diverse electron donors. Such biological sulfide production is a detrimental, widespread phenomenon in the petroleum industry, occurring within oil reservoirs or in topside processing facilities, under low- and high-temperature conditions, and in onshore or offshore operations. Sulfate reducers can exist either indigenously in deep subsurface reservoirs or can be “inoculated” into a reservoir system during oilfield development (e.g., via drilling operations) or during the oil production phase. In the latter, souring most commonly occurs during water flooding, a secondary recovery strategy wherein water is injected to re-pressurize the reservoir and sweep the oil towards production wells to extend the production life of an oilfield. The water source and type of production operation can provide multiple components such as sulfate, labile carbon sources, and sulfate-reducing communities that influence whether oilfield souring occurs. Souring can be controlled by biocides, which can non-specifically suppress microbial populations, and by the addition of nitrate (and/or nitrite) that directly impacts the sulfate-reducing population by numerous competitive or inhibitory mechanisms. In this review, we report on the diversity of sulfate reducers associated with oil reservoirs, approaches for determining their presence and effects, the factors that control souring, and the approaches (along with the current understanding of their underlying mechanisms) that may be used to successfully mitigate souring in low-temperature and high-temperature oilfield operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal A, Lal B (2009) Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol Ecol 69:301–312

    CAS  PubMed  Google Scholar 

  • Agrawal A, Vanbroekhoven K, Lal B (2010) Diversity of culturable sulfidogenic bacteria in two oil–water separation tanks in the north-eastern oil fields of India. Anaerobe 16:12–18

    CAS  PubMed  Google Scholar 

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294

    CAS  PubMed  Google Scholar 

  • Allen LA (1949) The effect of nitro-compounds and some other substances on production of hydrogen-sulfide by sulphate-reducing bacteria in sewage. Proc Soc Appl Bacteriol 2:26–38

    Google Scholar 

  • An S, Tang K, Nemati M (2010) Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: effects of sulphide loading rate and sulphide to nitrate loading ratio. Water Res 44:1531–1541

    CAS  PubMed  Google Scholar 

  • Barton LL, Fauque GC (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98, J Ind Microbiol

    CAS  PubMed  Google Scholar 

  • Bastin ES, Greer FE, Merritt CA, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24

    CAS  PubMed  Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beeder J, Torsvik T, Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336

    CAS  PubMed  Google Scholar 

  • Belyakova EV, Rozanova EP, Borzenkov IA, Tourova TP, Pusheva MA, Lysenko AM, Kolganova TV (2006) The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology 75:161–171

    CAS  Google Scholar 

  • Birkeland N-K (2005) Sulfate-reducing bacteria and archaea. In: Olivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, pp 35–54

    Google Scholar 

  • Bødtker G, Thorstenson T, Lillebø B-P, Thorbjørnsen BE, Ulvøen RH, Sunde E, Torsvik T (2008) The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. J Ind Microbiol Biotechnol 35:1625–1636

    PubMed  Google Scholar 

  • Bødtker G, Lysnes K, Torsvik T, Bjørnestad EØ, Sunde E (2009) Microbial analysis of backflowed injection water from a nitrate-treated North Sea oil reservoir. J Ind Microbiol Biotechnol 36:439–450

    PubMed  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L'Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Callbeck CM, Dong X, Chatterjee I, Agrawal A, Caffrey SM, Sensen CW, Voordouw G (2011) Microbial community succession in a bioreactor modeling a souring low-temperature oil reservoir subjected to nitrate injection. Appl Microbiol Biotechnol 91:799–810

    CAS  PubMed  Google Scholar 

  • Cavallaro AN, Gracia Martinez ME, Ostera H, Panarello H, Cordero RR (2005) Oilfield reservoir souring during waterflooding: a case study with low sulphate concentration in formation and injection waters. SPE 92959:1–12

    Google Scholar 

  • Chen C, Taylor RT (1997) Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. Appl Microbiol Biotechnol 48:121–128

    CAS  PubMed  Google Scholar 

  • Chen C, Reinsel MA, Mueller RF (1994) Kinetic investigation of microbial souring in porous media using microbial consortia from oil reservoirs. Biotechnol Bioeng 44:263–269

    CAS  PubMed  Google Scholar 

  • Christensen B, Torsvik T, Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl Environ Microbiol 58:1244–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connan J, Lacrampe-Couloume G, Magot M (1995) Origin of gases in reservoirs. Proc 1995 Int Gas Res Conf 21–61

  • Coombe D, Jack T, Voordouw G, Zhang F, Clay B, Miner K (2010) Simulation of bacterial souring control in an Albertan heavy oil reservoir. J Can Pet Technol 49:19–26

    CAS  Google Scholar 

  • Cornish Shartau SL, Yurkiw M, Lin S, Grigoryan AA, Lambo A, Park H, Lomans BP, Van Biezen ED, Jetten MSM, Voordouw G (2010) Ammonium concentrations in produced waters from a mesothermic oil field subjected to nitrate injection decrease through formation of denitrifying biomass and anammox activity. Appl Environ Microbiol 76:4977–4987

    PubMed Central  Google Scholar 

  • Dahle H, Garshol F, Madsen M, Birkeland N (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek 93:37–49

    PubMed  Google Scholar 

  • Davidova I, Hicks MS, Fedorak PM, Suflita JM (2001) The influence of nitrate on microbial processes in oil industry production waters. J Ind Microbiol Biotechnol 27:80–86

    CAS  PubMed  Google Scholar 

  • Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov., sp. nov. an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742

    CAS  PubMed  Google Scholar 

  • Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J, Suflita JM (2009) Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol 43:7977–7984

    CAS  PubMed  Google Scholar 

  • Eckford RE, Fedorak PM (2002) Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields. J Ind Microbiol Biotechnol 29:243–254

    CAS  PubMed  Google Scholar 

  • Farhadinia MA, Bryant SL, Sepehrnoori K, Delshad M (2010) Development and implementation of a multidimensional reservoir souring module in a chemical flooding simulator. Petrol Sci Technol 28:535–546

    CAS  Google Scholar 

  • Feio MJ, Zinkevich V, Beech IB, Llobet-Brossa E, Eaton P, Schmitt J, Guezennec J (2004) Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. Int J Syst Evol Microbiol 54:1747–1752

    CAS  PubMed  Google Scholar 

  • Fisher H (2002) On-stream pigging for corrosion. Pipeline Gas J. March 2002, p 37

  • Foght JM (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120

    CAS  PubMed  Google Scholar 

  • Foght JM (2009) Chapter 39: Microbial communities in oil shales, biodegraded and heavy oil reservoirs, and bitumen deposits. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2161–2172

    Google Scholar 

  • Frazer LC, Bolling JD (1991) Hydrogen sulfide forecasting techniques for the Kuparuk River field. SPE 22105:399–406

    Google Scholar 

  • Gadekar S, Nemati M, Hill GA (2006) Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res 40:2436–2446

    CAS  PubMed  Google Scholar 

  • Galushko AS, Rozanova EP (1991) Desulfobacterium cetonicum sp. nov.: a sulfate-reducing bacterium which oxidizes fatty acids and ketones. Mikrobiologiya 60:102–107

    CAS  Google Scholar 

  • Gana ML, Kebbouche-Gana S, Touzi A, Zorgani MA, Pauss A, Lounici H, Mameri N (2011) Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry. J Ind Microbiol Biotechnol 38:391–404

    CAS  PubMed  Google Scholar 

  • Gardner LR, Stewart PS (2002) Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:354–360

    CAS  PubMed  Google Scholar 

  • Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12:3074–3086

    CAS  PubMed  Google Scholar 

  • Gittel A, Sørensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75:7086–7096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443

    CAS  PubMed  Google Scholar 

  • Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 5:607–617

    CAS  PubMed  Google Scholar 

  • Greene EA, Brunelle V, Jenneman GE, Voordouw G (2006) Synergistic inhibition of microbial sulfide production by combinations of the metabolic inhibitor nitrite and biocides. Appl Environ Microbiol 72:7897–7901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoryan A, Voordouw G (2008) Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle. Ann NY Acad Sci 1125:345–352

    CAS  PubMed  Google Scholar 

  • Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, Voordouw G (2008) Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol 74:4324–4335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186:7944–7950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haveman SA, Greene EA, Voourdouw G (2005) Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol 7:1461–1465

    CAS  PubMed  Google Scholar 

  • He Q, He Z, Joyner DC, Joachimiak M, Price MN, Yang ZK, Yen H-B, Hemme CL, Chen W, Fields MM, Stahl DA, Keasling JD, Keller M, Arkin AP, Hazen TC, Wall JD, Zhou J (2010) Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris. ISME Journal 4:1386–1397

    CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    CAS  PubMed  Google Scholar 

  • Hitzman DO, Sperl GT, Sandbeck KA (1995) Method for reducing the amount of and preventing the formation of hydrogen sulfide in an aqueous system. US Patent 5405531

  • Holmkvist L,Ostergaard JJ, Skovhus TL (2011) Chapter 7. Which microbial communities are present? Using fluorescence in situ hydbridization (FISH): microscopic techniques for enumeration of troublesome microorganisms in oil and fuel samples. In: Whitby C and Skovhus TL (eds) Applied Microbiology and Molecular Biology in Oilfield Systems. Springer, pp 55–61

  • Holubnyak YI, Bremer JM, Mibeck BAF, Hamling JA, Huffman BW, Klapperich RJ, Smith SA, Sorensen JA, Harju JA (2011) Understanding the souring at Bakken oil reservoirs. SPE 141434:1–6

    Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Prog 19:338–345

    CAS  PubMed  Google Scholar 

  • Hubert C, Voordouw G, Mayer B (2009) Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: the example of oil reservoir souring control. Geochim Cosmochim Acta 73:3864–3879

    CAS  Google Scholar 

  • Hulecki JC, Foght JM, Gray MR, Fedorak PM (2009) Sulfide persistence in oil field waters amended with nitrate and acetate. J Ind Microbiol Biotechnol 36(12):1499–1511

    CAS  PubMed  Google Scholar 

  • Hulecki JC, Foght JM, Fedorak PM (2010) Storage of oil field-produced waters alters their chemical and microbiological characteristics. J Ind Microbiol Biotechnol 37:471–481

    CAS  PubMed  Google Scholar 

  • Jack TR, Grigoryan A, Lambo A, Voordouw G, Granli T (2009) Troubleshooting nitrate field injections for control of reservoir souring. Proceedings—SPE Int Symp Oilfield Chem 1:522–533

    Google Scholar 

  • Jenneman GE, McInerney MJ, Knapp RM (1986) Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol 51:1205–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenneman GE, Moffitt PD, Bala GA, Webb RH (1999) Sulfide removal in reservoir brine by indigenous bacteria. SPE Prod Facilities 14:219–225

    CAS  Google Scholar 

  • Jurelevicius D, von der Weid I, Korenblum E, Valoni E, Penna M, Seldin L (2008) Effect of nitrate injection on the bacterial community in a water–oil tank system analyzed by PCR-DGGE. J Ind Microbiol Biotechnol 35:251–255

    CAS  PubMed  Google Scholar 

  • Kaster KM, Grigoriyan A, Jennneman G, Voordouw G (2007) Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea. Appl Microbiol Biotechnol 75:195–203

    CAS  PubMed  Google Scholar 

  • Kaster KM, Bonaunet K, Berland H, Kjeilen-Eilertsen G, Brakstad OG (2009) Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie van Leeuwenhoek 96:423–429

    PubMed  Google Scholar 

  • Kaur G, Mandal AK, Nihlani MC, Lal B (2009) Control of sulfidogenic bacteria in produced water from the Kathloni oilfield in northeast India. Int Biodeter Biodeg 63:151–155

    CAS  Google Scholar 

  • Khatib ZI, Salanitro JR (1997) Reservoir souring: analysis of surveys and experience in sour waterfloods. SPE 38795:449–459

    Google Scholar 

  • Khelifi N, Grossi V, Hamdi M, Dolla A, Tholozan J, Ollivier B, Hirschler-Réa A (2010) Anaerobic oxidation of fatty acids and alkenes by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus. Appl Environ Microbiol 76:3057–3060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kjellerup BV, Veeh RH, Sumithraratne P, Thomsen TR, Buckingham-Meyer K, Frølund B, Sturman P (2005) Monitoring of microbial souring in chemically treated, produced-water biofilm systems using molecular techniques. J Ind Microbiol Biotechnol 32:163–170

    CAS  PubMed  Google Scholar 

  • Kuijvenhoven C, Noirot J, Bostock AM, Chappell D, Khan A (2006) Use of nitrate to mitigate reservoir souring in Bonga deepwater development offshore Nigeria. SPE Prod Oper 21:467–474

    CAS  Google Scholar 

  • Kumaraswamy R, Ebert S, Gray MR, Fedorak PM, Foght JM (2011) Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production. Appl Microbiol Biotechnol 89:2027–2038

    CAS  PubMed  Google Scholar 

  • Lambo AJ, Noke K, Larter SR, Voordouw G (2008) Competitive, microbially mediated reduction of nitrate with sulfide and aromatic oil components in a low-temperature, western Canadian oil reservoir. Environ Sci Technol 42:8941–8946

    CAS  PubMed  Google Scholar 

  • Larsen J (2002) Downhole nitrate applications to control sulfate reducing bacteria activity and reservoir souring. Corrosion 2002 Paper 02025:1–10

    Google Scholar 

  • Larsen J, Skovhus TL (2011) Chapter 13. The effect of nitrate injection in oil reservoirs—experience with nitrate injection in the Halfdan oilfield. In: Whitby C, Skovhus TL (eds) Applied microbiology and molecular biology in oilfield systems. Springer, Berlin, pp 109–115

  • Larsen J, Rod MH, Zwolle S (2004) Prevention of reservoir souring in the Halfdan field by nitrate injection. Corrosion 2004 Paper 04761:1–18

    Google Scholar 

  • Larsen J, Rasmussen K, Pedersen H, Sorensen K, Lundgaard T, Skovhus TL (2010) Consortia of MIC Bacteria and Archaea cauing pitting corrosion in top side oil production facilities. Corrosion 2010 Paper 10252

  • Lee M-P, Caffrey SM, Voordouw JK, Voordouw G (2010) Effects of biocides on gene expression in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Appl Microbiol Biotechnol 87:1109–1118

    CAS  PubMed  Google Scholar 

  • L' Haridon S, Reysenbach A, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224

    CAS  Google Scholar 

  • Li H, Yang S, Mu B, Rong Z, Zhang J (2007) Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiol Ecol 60:74–84

    CAS  PubMed  Google Scholar 

  • Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463

    CAS  PubMed  Google Scholar 

  • Lien T, Madsen M, Steen IH, Gjerdevik K (1998) Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 48:469–474

    PubMed  Google Scholar 

  • Lien T, Beeder J (1997) Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bacteriol 47:1124–1128

    CAS  PubMed  Google Scholar 

  • Lin S, Krause F, Voordouw G (2009) Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria. Appl Microbiol Biotechnol 83:369–376

    CAS  PubMed  Google Scholar 

  • Little BJ, Lee JS (2007) Microbiologically influenced corrosion. John Wiley & Sons, NJ

    Google Scholar 

  • Lysnes K, Bødtker G, Torsvik T, Bjørnestad EØ, Sunde E (2009) Microbial response to reinjection of produced water in an oil reservoir. Appl Microbiol Biotechnol 83:1143–1157

    CAS  PubMed  Google Scholar 

  • Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, pp 21–33

    Google Scholar 

  • Magot M, Caumette P, Desperrier JM, Matheron R, Dauga C, Grimont F, Carreau L (1992) Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol 42:398–403

    CAS  PubMed  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    CAS  PubMed  Google Scholar 

  • Magot M, Basso O, Tardy-Jacquenod C, Caumette P (2004) Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 54:1693–1697

    CAS  PubMed  Google Scholar 

  • Martin RL (2008) Corrosion consequences of nitrate/nitrite additions to oilfield brines. SPE J Pet Tech 114923:1–8

    Google Scholar 

  • Mayilraj S, Kaksonen AH, Cord-Ruwisch R, Schumann P, Spröer C, Tindall BJ, Spring S (2009) Desulfonauticus autotrophicus sp. nov., a novel thermophilic sulfate-reducing bacterium isolated from oil-production water and emended description of the genus Desulfonauticus. Extremophiles 13:247–255

    CAS  PubMed  Google Scholar 

  • Miranda-Tello E, Fardeau M, Fernández L, Ramírez F, Cayol J, Thomas P, Garcia J, Ollivier B (2003) Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9:97–103

    CAS  PubMed  Google Scholar 

  • Moura I, Bursakov S, Costa C, Moura JJG (1997) Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3:279–290

    CAS  PubMed  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nature Rev Microbiol 6:441–454

    CAS  Google Scholar 

  • Myhr S, Lillebø B, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408

    CAS  PubMed  Google Scholar 

  • Nazina TN, Rozanova EP (1978) Thermophillic sulfate-reducing bacteria from oil-bearing strata. Mikrobiologiya 47:142–148

    CAS  Google Scholar 

  • Nazina TN, Ivanova AE, Kandaurova GF, Ibatullin RR, Belyaev SS, Ivanov MV (1998) Microbiological investigation of the carbonate collector of the Romashkinskoe oil field: background study before testing a biotechnology for the enhancement of oil recovery. Microbiology 67:582–589

    CAS  Google Scholar 

  • Nazina TN, Shestakova NM, Grigor'yan AA, Mikhailova EM, Tourova TP, Poltaraus AB, Feng C, Ni F, Belyaev SS (2006) Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China). Microbiology 75:55–65

    CAS  Google Scholar 

  • Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G (2001a) Control of biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol 26:350–355

    CAS  PubMed  Google Scholar 

  • Nemati M, Jenneman GE, Voordouw G (2001b) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434

    CAS  PubMed  Google Scholar 

  • Nga DP, Ha DTC, Hien LT, Stan-Lotter H (1996) Desulfovibrio vietnamensis sp.nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392

    CAS  Google Scholar 

  • Nilsen RK, Torsvik T, Lien T (1996) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot north sea oil reservoir. Int J Syst Bacteriol 46:397–402

    Google Scholar 

  • Ommedal H, Torsvik T (2007) Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column. Int J Syst Evol Microbiol 57:2865–2869

    CAS  PubMed  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patton CC (1990) Injection-water quality. SPE J Pet Tech 42:1238–1240

    CAS  Google Scholar 

  • Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89

    Google Scholar 

  • Reinsel MA, Sears JT, Steward PS, McInerney MJ (1996) Control of microbial souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column. J Indust Microbiol 17:128–136

    CAS  Google Scholar 

  • Robinson K, Ginty W, Samuelsen E, Lundgaard T, Skovhus TL (2010) Reservoir souring in a field with sulphate removal: a case study. SPE 132697:1–15

    Google Scholar 

  • Rosnes JT, Torsvik T, Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 57:2302–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozanova EP, Nazina TN, Galushko AS (1988) Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Microbiology (New York) 57:514–520

    Google Scholar 

  • Rozanova EP, Borzenkov IA, Tarasov AL, Suntsova LA, Dong CL, Belyaev SS, Ivanov MV (2001a) Microbiological processes in a high-temperature oil field. Microbiology 70:102–110

    CAS  Google Scholar 

  • Rozanova EP, Tourova TP, Kolganova TV, Lysenko AM, Mityushina LL, Yusupov SK, Belyaev SS (2001b) Desulfacinum subterraneum sp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology 70:466–471

    CAS  Google Scholar 

  • Sanders PF, Sturman PJ (2005) Biofouling in the oil industry. In: Ollivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, pp 171–178

    Google Scholar 

  • Seto CJ, Beliveau DA (2000) Reservoir souring in the Caroline field. SPE 59778:1–9

    Google Scholar 

  • Skovhus TL, Sorensen KB, Larsen J (2011) Chapter 16. Problems caused by microbes and treatment strategies: rapid diagnostics of microbially influenced corrosion (MIC) in oilfield systems with a DNA-based test kit. In: Whitby C, Skovhus TL (eds) Applied microbiology and molecular biology in oilfield systems. Springer, Berlin, pp 133–140

  • Song G, Zhou T, Cheng L, Wang Y, Tain G, Pi J, Zhang Z (2009) Aquathermolysis of conventional heavy oil with superheated steam. Pet Sci 6:289–293

    CAS  Google Scholar 

  • Sorensen KB, Skovhus TL, Larsen J (2011) Chapter 10. How many microoorganisms are present? Techniques for enumerating microorganisms in oilfields. In: Whitby C, Skovhus TL (eds) Applied microbiology and molecular biology in oilfield systems. Springer, Berlin, pp 85–91

  • Stetter KO, Huber R, Blochl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745

    Google Scholar 

  • Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells from the Barnett Shale. Appl Environ Microbiol 77:4722–4753

    Google Scholar 

  • Sunde E, Torsvik T (2005) Chapter 10. Microbial control of hydrogen sulfide production in oil reservoirs. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, pp 201–213

    Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94

    CAS  Google Scholar 

  • Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O, Magot M (1996a) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42:259–266

    CAS  PubMed  Google Scholar 

  • Tardy-Jacquenod C, Magot M, Laigret F, Kaghad M, Patel BKC, Guezennec J, Matheron R, Caumette P (1996b) Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int J Syst Bacteriol 46:710–715

    CAS  PubMed  Google Scholar 

  • Tardy-Jacquenod C, Magot M, Patel BKC, Matheron R, Caumette P (1998) Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48:333–338

    PubMed  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D, Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63:1785–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Voordouw G (1998) Effects of two diamine biocides on the microbial community from an oil field. Can J Microbiol 44:1060–1065

    CAS  Google Scholar 

  • Ulrich GA, Krumholz LR, Suflita JM (1997) A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl Environ Microbiol 63:1627–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vance I, Thrasher DR (2005) Chapter 7. Reservoir souring: mechanisms and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, pp 123–142

    Google Scholar 

  • Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169–180

    CAS  PubMed  Google Scholar 

  • Vik EA, Janbu AO, Garshol F, Henninge LB, Engebretsen S, Kuijvenhoven C, Oliphant D, Hendriks WP (2007) Nitrate-based souring mitigation of produced water—side effects and challenges from the Draugen produced-water reinjection pilot. Proceedings–SPE Int Symp Oilfield Chem, pp 406–416

  • Von Der Weid I, Korenblum E, Jurelevicius D, Rosado AS, Dino R, Sebastián GV, Seldin L (2008) Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil. J Microbiol Biotechnol 18:5–14

    PubMed  Google Scholar 

  • Voordouw G (2008) Chapter 29. Emerging oil field biotechnologies: prevention of oil field souring by nitrate injection. In: Wall J (ed) Bioenergy. ASM Press, Washington, pp 379–388

    Google Scholar 

  • Voordouw G, Voordouw JK, Jack TR, Foght J, Fedorak PM, Westlake DWS (1992) Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl Environ Microbiol 58:3542–3552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voordouw G, Grigoryan AA, Lambo A, Lin S, Park HS, Jack TR, Coombe D, Clay B, Zhang F, Ertmoed R, Miner K, Arensdorf JJ (2009) Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir. Environ Sci Technol 43:9512–9518

    CAS  PubMed  Google Scholar 

  • Voordouw G, Agrawal A, Park HS, Gieg LM, Jack TM, Cavallaro A, Granli T, Miner K (2011) Souring treatment with nitrate in fields from which oil is produced by produced water reinjection. SPE 141354:1–3

    Google Scholar 

  • Wei L, Ma F, Zhao G (2010) Composition and dynamics of sulfate-reducing bacteria during the waterflooding process in the oil field application. Bioresour Technol 101:2643–2650

    CAS  PubMed  Google Scholar 

  • Wen J, Zhao K, Gu T, Raad II (2009) A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde. Int Biodeter Biodeg 63:1102–1106

    CAS  Google Scholar 

  • Wen J, Zhao K, Gu T, Raad I (2010) Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World J Microbiol Biotechnol 26:1053–1057

    CAS  Google Scholar 

  • Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron donor. In: Barton LL, Hamilton WA (eds) Sulphate-reducing Bacteria. Environmental and Engineered Systems. Cambridge University Press, Cambridge, pp 265–303

    Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, Di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:1034–1037

    CAS  PubMed  Google Scholar 

  • Williamson N (2011) Chapter 18. Health and safety issues from the production of hydrogen sulphide. In: Whitby C and Skovhus TL (eds) Applied Microbiology and Molecular Biology of Oilfield Systems. Springer, pp 151–157

  • Xin Q, Zhang X, Lei L (2008) Inactivation of bacteria in oil field injection water by non-thermal plasma treatment. Plasma Chem Plasma Process 28:689–700

    CAS  Google Scholar 

  • Xin Q, Zhang X, Li Z, Lei L (2009) Sterilization of oil-field re-injection water using combination treatment of pulsed electric field and ultrasound. Ultrason Sonochem 16:1–3

    CAS  PubMed  Google Scholar 

  • Youssef N, Elshahed MS, McInerney MJ (2009) Chapter 6. Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251

    CAS  PubMed  Google Scholar 

  • Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76:1245–1253

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M. Foght.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gieg, L.M., Jack, T.R. & Foght, J.M. Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92, 263–282 (2011). https://doi.org/10.1007/s00253-011-3542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3542-6

Keywords

Navigation