Skip to main content

Advertisement

Log in

From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgal based biofuels are discussed as future sustainable energy source because of their higher photosynthetic and water use efficiency to produce biomass. In the context of climate CO2 mitigation strategies, algal mass production is discussed as a potential CO2 sequestration technology which uses CO2 emissions to produce biomass with high-oil content independent on arable land. In this short review, it is presented how complete energy balances from photon to harvestable biomass can help to identify the limiting processes on the cellular level. The results show that high productivity is always correlated with high metabolic costs. The overall efficiency of biomass formation can be improved by a photobioreactor design which is kinetically adapted to the rate-limiting steps in cell physiology. However, taking into account the real photon demand per assimilated carbon and the energy input for biorefinement, it becomes obvious that alternative strategies must be developed to reach the goal of a real CO2 sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotech 42:70–77

    Article  Google Scholar 

  • Beer L, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for hydrogen and biofuel production. Curr Opin Biotech 20:264–271

    Article  CAS  Google Scholar 

  • Breitman CS, Hsu JT (2010) Microalgae cultivation using photobioreactors for biodiesel production. Recent Pat Chem Eng 3:180–194

    Article  CAS  Google Scholar 

  • Brennan L, Owede P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland. http://www.seambiotic.com/uploads/algae%20report%2004%202009.pdf. Accessed 01 July 2011

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to biogas energy conversion system. Biotechn Bioeng 103:296–304

    Article  Google Scholar 

  • Doucha J, Livansky K (2006) Productivity, CO2/O2 exchange and hydraulics in out-door open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and South European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  • Ecke M (2009) Mikroalgenproduktion im industriellen Maßstab - Betriebserfahrungen mit der 12000 m2 Photobioreaktoranlage in Klötze/Deutschland http://www.mstonline.de/mikrosystemtechnik/medien/05algomed. Accessed 01 July 2011

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gilbert M, Domin A, Becker A, Wilhelm C (2000) Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38:111–126

    Article  CAS  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    Article  CAS  Google Scholar 

  • Grossman AR, Bhaya D, Apt KE, Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control and evolution. Annu Rev Genet 29:231–247

    Article  CAS  Google Scholar 

  • Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22:189–194

    Article  CAS  Google Scholar 

  • Jakob T, Wagner H, Stehfest K, Wilhelm C (2007) A complete energy balance from photons to new biomass reveals the light- and nutrient dependent variability in the metabolic costs of carbon assimilation. J Exp Bot 58:2101–2112

    Article  CAS  Google Scholar 

  • Kirk JT (1975) A theoretical analysis of the contributions of algal cells to the attenuation of light within natural waters. General treatments of suspensions of pigmented cells. New Phytol 75:11–20

    Article  Google Scholar 

  • Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    Article  CAS  Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:238–243

    Article  CAS  Google Scholar 

  • Langner U, Jakob T, Stehfest K, Wilhelm C (2009) An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Plant Cell Environ 32:250–258

    Article  CAS  Google Scholar 

  • Larkum AWD (2010) Limitation and prospects of natural photosynthesis for bioenergy production. Curr Opin Biotechnol 21:271–276

    Article  CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechosystis as a model organism. Metab Eng 12:70–79

    Article  CAS  Google Scholar 

  • Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13:249–256

    Article  Google Scholar 

  • McGinn PJ, Dickinson KE, Bhatti S, Frigon J-C, Guiot SR, O'Leary SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res. doi:10.1007/s11120-011-9638-0

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk P, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  CAS  Google Scholar 

  • Oroszi S, Jakob T, Wilhelm C, Harms H, Maskow T (2011) Photosynthetic energy conversion in the diatom Phaeodactylum tricornutum. Measuring by calorimetry, oxygen evolution and pulse-amplitude modulated fluorescence. J Therm Anal Calorim 104:223–231

    Article  CAS  Google Scholar 

  • Quintana N, Van der Kooy F, van de Rhhee MD, Voshol GP, Verporte P (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. App Microbiol Biotechnol 91:471–490

    Article  CAS  Google Scholar 

  • Radmer R, Kok B (1977) Photosynthesis: limited yields, unlimited dreams. Bioscience 27:599–605

    Article  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosnth Res 75:1–10

    Article  CAS  Google Scholar 

  • Ramachandra TV, Mahapatra DM, Karthick B, Milking (2009) Diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48:8769–8788

    Article  CAS  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Perez A, Garcia-Camacho F, Ramos Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agr Food Chem 49:2966–2972

    Article  CAS  Google Scholar 

  • Reijnders L (2009) Microalgal and terrestrial transport biofuels to displace fossil fuels. Energies 2:48–56

    Article  CAS  Google Scholar 

  • Rowan KS (1989) Photosynthetic pigments. Cambridge University Press, Cambridge

    Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant 15:554–564

    Google Scholar 

  • Su W, Jakob T, Wilhelm C (2011) The impact of non-photochemical quenching of fluorescence on the photon balance in diatoms under dynamic light conditions. J Phycol (in press)

  • Suggett D, Prasil O, Borwitzka MA (2011) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, The Netherlands

    Google Scholar 

  • Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A (2009) Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environ 32:417–427

    Article  CAS  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  Google Scholar 

  • Toepel J, Langner U, Wilhelm C (2005) The combination of flow cytometry and single cell absorption spectroscopy to study the phytoplankton structure and to calculate the Chl a specific absorption coefficients at the taxon level. J Phycol 41:1099–1109

    Article  CAS  Google Scholar 

  • Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169:95–108

    Article  CAS  Google Scholar 

  • Wagner H, Liu Z, Langner U, Stehfest K, Wilhelm C (2010) The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae. J Biophotonics 3:557–566

    Article  CAS  Google Scholar 

  • Walker DA (2010a) Biofuels—for better or worse? Ann Appl Biol 156:319–327

    Article  Google Scholar 

  • Walker DA (2010b) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517

    Article  Google Scholar 

  • Weinberg J, Kaltschmitt M, Wilhelm C (2011) Biofuels from microalgae—an ecological analysis (in press)

  • Weyer KM, Bush DR, Darzins A, Willson BD (2009) Theoretical maximum algal oil production. Bioenerg Res 3:204–213

    Article  Google Scholar 

  • Wilhelm C (1983) Untersuchungen über den geschwindigkeitsbestimmenden Schritt im photosynthetischen Elektronentransport in der Grünalge Chlorella fusca. Dissertation, Johannes Gutenberg-Universität Mainz

  • Wilhelm C (1993) Some critical remarks on the suitability of the concept of the photosynthetic unit in photosynthesis research and phytoplankton ecology. Botanica Acta 106:287–293

    CAS  Google Scholar 

  • Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168:79–87

    Article  CAS  Google Scholar 

  • Wilhelm C, Wild A (1984) The variability of the photosynthetic unit in Chlorella. II. The effect of light intensity and cell development on photosynthesis, P-700 and cytochrome f in homocontinuous and synchronous cultures of Chlorella. J Plant Physiol 115:124–135

    Google Scholar 

  • Wilhelm C, Jakob T, Wagner H, Stehfest K, Langner U (2010) Lessons from energy balances for the production strategies of biofuels. Proceedings 10th Intern. Congress Photosynthesis, Beijing

  • Zijffers JW, Schippers KJ, Zheng K, Janssen M, Tramper J, Wijffels RH (2010) Maximum photosynthetic yield of green microalgae in photobioreactors. Mar Biotech 12:708–718

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft grant Wi 764/16-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, C., Jakob, T. From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92, 909–919 (2011). https://doi.org/10.1007/s00253-011-3627-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3627-2

Keywords

Navigation