Skip to main content

Advertisement

Log in

Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polyethylene-co-vinylacetate (EVA) films with different concentrations (3.5 wt% and 7 wt%) of essential oil constituents, carvacrol or cinnamaldehyde, were prepared and characterized by mechanical, antibacterial and antibiofilm properties. The incorporation of the compounds into copolymer films affected their elastic modulus, tensile stress and elongation at break. Carvacrol and cinnamaldehyde act as plasticizers which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the film. The analysis of the surface characteristics demonstrated that essential oil constituents lowered the contact angle values without causing any remarkable variation of the surface roughness. The films allowed progressive diffusion of the bioactive molecules and the kinetic of release was correlated with the damaging effect on bacterial growth. The kill curves proved that the film with essential oil constituents (7 wt%) had a significant bactericidal effect (reduction of 4 and 2 log CFU) against Staphylococcus aureus and Escherichia coli and a bacteriostatic effect against Staphylococcus epidermidis and Listeria monocytogenes (reduction of about 1 log CFU). With regard to biofilm formation the biomass formed on polymeric films surface was significantly reduced if compared with the pure copolymer control. The results were confirmed by fluorescence microscopy images by Live/dead staining. The reduction in the surface tension coupled to an inherent bactericidal property of carvacrol and cinnamaldehyde could in turn affect the initial attachment phase of bacteria and compromise the normal biofilm development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amalaradjou MA, Narayanan A, Baskaran SA, Venkitanarayanan K (2010) Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli. J Urol 184:358–363

    Article  Google Scholar 

  • Amalaradjou MA, Narayanan A, Venkitanarayanan K (2011) Trans-cinnamaldehyde decreases attachment and invasion of uropathogenic Escherichia coli in urinary tract epithelial cells by modulating virulence gene expression. J Urol 185:1526–1531

    Article  CAS  Google Scholar 

  • Arnold RR, Wei HH, Simmons E, Tallury P, Barrow DA, Kalachandra S (2008) Antimicrobial activity and local release characteristics of chlorhexidine diacetate loaded within the dental copolymer matrix, ethylene vinyl acetate. J Biomed Mat Res Part B Appl Biomat 86B:506–513

    Article  CAS  Google Scholar 

  • Blanco AR, Sudano-Roccaro A, Spoto GC, Nostro A, Rusciano D (2005) Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob Agents Chemother 49:4339–4343

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods. Int J Food Microbiol 94:223–253

    Article  CAS  Google Scholar 

  • Burt SA, van der Zee R, de Koets AP, Graaff AM, van Knapen F, Gaastra W, Haagsman HP, Veldhuizen EJ (2007) Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Appl Environ Microbiol 73:4484–4490

    Article  CAS  Google Scholar 

  • Center for Food Safety and Applied Nutrition (2006) EAFUS: a Food Additive Database. Washington DC: US Food and Drug Administration, Center for Food and Applied Nutrition

  • Commission of the European Communities. Commission Decision of 23 February 1999 Adopting a Register of Flavouring Substances Used in or on Foodstuffs Drawn Up in Application of Regulation (EC) No. 2231-96 of the European Parliament and of the Council of 28 October 1996 (Notified under Number C(1999) 399) (Text with EEA Relevance) (1999/217/EC). Official Journal of the European Communities L084, 1999; 1–137. Brussels, Belgium: Commission of the European Communities.

  • Di Stefano A, D’Aurizio E, Trubiani O, Grande R, Di Campli E, Di Giulio M, Di Bartolomeo S, Sozio P, Iannitelli A, Nostro A, Cellini L (2009) Viscoelastic properties of Staphylococcus aureus and Staphylococcus epidermidis mono-microbial biofilms. Microb Biotechnol 2:634–641

    Article  Google Scholar 

  • Dong BY, Manolache S, Somers EB, Wong ACL, Denes FS (2005) Generation of antifouling layers on stainless steel surfaces by plasma-enhanced crosslinking of polyethylene glycol. J Appl Polym Sci Symp 97:485–497

    Article  CAS  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  Google Scholar 

  • Elgayyar M, Draughon FA, Golden DA, Mount JR (2001) Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganism. J Food Prot 64:1019–1024

    CAS  Google Scholar 

  • Fenaroli G (2002) Fenaroli’s handbook of flavor ingredients, 4th edn. CRC, Boca Raton

    Google Scholar 

  • Gavini E, Sanna V, Sharma R, Juliano C, Usai M, Marchetti M, Karlsen J, Giunchedi P (2005) Solid lipid microparticles (SLM) containing juniper oil as anti-acne topical carriers: preliminary studies. Pharm Dev Technol 10:479–487

    Article  CAS  Google Scholar 

  • Gill AO, Holley RA (2004) Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Microbiol 70:5750–5755

    Article  CAS  Google Scholar 

  • Gutiérrez L, Escudero A, Batlle R, Nerín C (2009) Effect of mixed antimicrobial agents and flavors in active packaging films. Agric Food Chem 57:8564–8571

    Article  Google Scholar 

  • Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, Von-Wright A (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46:3590–3595

    Article  CAS  Google Scholar 

  • Hogt AH, Dankert J, Feijen J (1986) Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers. J Biomed Mater Res 20:533–545

    Article  CAS  Google Scholar 

  • Inouye S, Takizawa T, Yamaguchi H (2001) Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother 47:565–573

    Article  CAS  Google Scholar 

  • Ji J, Zhang W (2009) Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. J Biomed Mater Res 88:448–453

    Article  Google Scholar 

  • Kirwan MJ, Strawbridge JW (2003) Food packaging technology. In: Coles R, McDowell D, Kirwan MJ (eds) Plastics in food packaging. Blackwell Publishing Ltd, London, pp 174–240

    Google Scholar 

  • Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 71:797–803

    Article  CAS  Google Scholar 

  • LaCoste A, Schaich KM, Zumbrunnen D, Yam KL (2005) Advancing controlled release packaging through smart blending. Packag Technol Sci 18:77–87

    Article  CAS  Google Scholar 

  • Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    Article  CAS  Google Scholar 

  • López P, Sánchez C, Batlle R, Nerín C (2007) Development of flexible antimicrobial films using essential oils as active agents. J Agric Food Chem 55:8814–8824

    Article  Google Scholar 

  • McClements JD (1999) Food emulsions: principles, practices and techniques. CRC, Boca Raton

    Google Scholar 

  • Niu C, Gilbert ES (2004) Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70:6951–6956

    Article  CAS  Google Scholar 

  • Niu C, Afre S, Gilbert ES (2006) Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43:489–494

    Article  CAS  Google Scholar 

  • Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, Sudano Roccaro A, Alonzo V (2004) Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol Lett 230:191–195

    Article  CAS  Google Scholar 

  • Nostro A, Sudano Roccaro A, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523

    Article  CAS  Google Scholar 

  • Nostro A, Marino A, Blanco AR, Cellini L, Di Giulio M, Pizzimenti F, Sudano Roccaro A, Bisignano G (2009) In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J Med Microbiol 58:791–7

    Article  CAS  Google Scholar 

  • Nostro A, Scaffaro R, Ginestra G, D’Arrigo M, Botta L, Marino A, Bisignano G (2010) Control of biofilm formation by poly-ethylene-co-vinyl acetate films incorporating nisin. Appl Microbiol Biotechnol 87:729–737

    Article  CAS  Google Scholar 

  • Perez-Conesa D, McLandsborough L, Weiss J (2006) Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. J Food Prot 69:2947–2954

    CAS  Google Scholar 

  • Persico P, Ambrogi V, Carfagna C, Cerruti P, Ferrocino I, Mauriello G (2009) Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym Engin Sci 49:1447–1455

    Article  CAS  Google Scholar 

  • Pranoto Y, Salokhe VM, Rakshit SK (2005) Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Res Int 38:267–272

    Article  CAS  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  CAS  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60:1585–1592

    CAS  Google Scholar 

  • Rojas-Graü MA, Avena-Bustillos RJ, Olsen C, FriedmanM HPR, Martin-Belloso O, Pan Z, McHugh TH (2007) Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films. J Food Engin 81:634–641

    Article  Google Scholar 

  • Scaffaro R, Botta L, La Mantia FP (2009) Preparation and characterization of polyolefin-based nanocomposite blown films for agricultural applications. Macromol Mater Engin 294:445–454

    Article  CAS  Google Scholar 

  • Scaffaro R, Botta L, Marineo S, Puglia AM (2011) Incorporation of nisin in poly (ethylene-co-vinyl acetate) films by melt processing: a study on the antimicrobial properties. J Food Prot 74:1137–1143

    Article  CAS  Google Scholar 

  • Scaffaro R, Botta L, Gallo G (2012) Photo-oxidative degradation of poly(ethyleneco-vinyl acetate)/nisin antimicrobial films. Polym Degrad Stab 97:653–660

    Google Scholar 

  • Ultee A, Bennik MH, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568

    Article  CAS  Google Scholar 

  • Wang Y, Somers EB, Manolache S, Denes FS, Wong ACL (2003) Cold plasma synthesis of poly(ethylene glycol)-like layers on stainless-steel surfaces to reduce attachment and biofilm formation by Listeria monocytogenes. J Food Sci 68:2772–2779

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nostro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nostro, A., Scaffaro, R., D’Arrigo, M. et al. Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl Microbiol Biotechnol 96, 1029–1038 (2012). https://doi.org/10.1007/s00253-012-4091-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4091-3

Keywords

Navigation