Skip to main content

Advertisement

Log in

Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from Taxus chinensis var. mairei

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Based on bioactivity-oriented isolation, the EtOAc extract of a culture broth of the endophytic fungus Perenniporia tephropora Z41 from Taxus chinensis var. mairei, with strong anti-Pyricularia oryzae activity, afforded a new sesquiterpenoid, perenniporin A (1), together with three known compounds, ergosterol (2), rel-(+)-(2aR,5R,5aR,8S,8aS,8bR)-decahydro-2,2,5,8-tetramethyl-2H-naphtho[1,8-bc]genfuran-5-ol (3), and albicanol (4). Their structures were elucidated by means of spectroscopic methods. All the isolated compounds and the EtOAc extract of P. tephropora Z41 (EPT) were evaluated for their cytotoxic activity against three human cancer cell lines (HeLa, SMMC-7721, and PANC-1). EPT demonstrated significant cytotoxicity with IC50 values ranging from 2 to 15 μg/mL. Compound 2 was the most cytotoxic constituent against the tested cell lines with IC50 values of 1.16, 11.63, and 11.80 μg/mL, respectively, while compounds 1, 3, and 4 exhibited moderate cytotoxicity with IC50 values ranging from 6 to 58 μg/mL. We conclude that the endophytic fungus P. tephropora is a promising source of novel and cytotoxic metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16. doi:10.1007/s13225-010-0034-4

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274. doi:10.1046/j.1461-0248.2000.00159.x

    Article  Google Scholar 

  • Baloglu E, Kingston DGI (1999) The taxane diterpenoids. J Nat Prod 62(10):1448–1472

    Article  CAS  Google Scholar 

  • Ben Younes S, Mechichi T, Sayadi S (2007) Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes. J Appl Microbiol 102(4):1033–1042. doi:10.1111/j.1365-2672.2006.03152.x

    CAS  Google Scholar 

  • Di Bari L, Pescitelli G, Pratelli C, Pini D, Salvadori P (2001) Determination of absolute configuration of acyclic 1, 2-diols with Mo2 (OAc)4. 1. Snatzke's Method Revisited. J Org Chem 66(14):4819–4825. doi:10.1021/jo010136v

    Article  Google Scholar 

  • Ding Y, Bao HY, Bau T, Li Y, Kim YH (2009) Antitumor components from Naematoloma fasciculare. J Microbiot Biotechnol 19(10):1135–1138. doi:10.4014/jmb.0901.022

    CAS  Google Scholar 

  • Evans HC, Holmes KA, Thomas SE (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2(2):149–160. doi:10.1007/s11557-006-0053-4

    Article  Google Scholar 

  • Górecki M, Jablonska E, Kruszewska A, Suszczynska A, Urbanczyk-Lipkowska Z, Gerards M, Morzycki JW, Szczepek WJ, Frelek J (2007) Practical Method for the Absolute Configuration Assignment of tert/tert 1, 2-Diols Using Their Complexes with Mo2 (OAc)4. J Org Chem 72(8):2906–2916. doi:10.1021/jo062445x

    Article  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526

    Article  CAS  Google Scholar 

  • Gunji S, Arima K, Beppu T (1983) Screening of antifungal antibiotics according to activities inducing morphological abnormalities. Agric Biol Chem 47(9):2061–2069

    Article  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y, He WH, Zheng WH, Hyde KD (2003) Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol Res 107(Pt 6):680–688. doi:10.1017/S0953756203007834

    Article  CAS  Google Scholar 

  • Hashimoto T, Takaoka S, Tanaka M, Asakawa Y (2003) Structures of two new highly oxygenated labdane-type diterpenoids and a new cadinane-type sesquiterpenoid possessing a cyclic ether linkage from the liverwort Ptychanthus striatus. Heterocycles 59(2):645–659

    Article  CAS  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42(2):543–555. doi:10.1016/j.ympev.2006.07.012

    Article  CAS  Google Scholar 

  • Huang W, Cai Y, Hyde K, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Ito H, Muranaka T, Mori K, Jin ZX, Tokuda H, Nishino H, Yoshida T (2000) Ichthyotoxic phloroglucinol derivatives from Dryopteris fragrans and their anti-tumor promoting activity. Chem Pharm Bull 48(8):1190–1195

    Article  CAS  Google Scholar 

  • Jasinghe VJ, Perera CO, Barlow PJ (2005) Bioavailability of vitamin D2 from irradiated mushrooms: an in vivo study. Brit J Nutr 93(6):951–956. doi:10.1079/BJN20051416

    Article  CAS  Google Scholar 

  • Kumaran RS, Kim HJ, Hur B-K (2010) Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J Biosci Bioeng 110(5):541–546. doi:10.1016/j.jbiosc.2010.06.007

    Article  CAS  Google Scholar 

  • Kuo CF, Hsieh CH, Lin WY (2011) Proteomic response of LAP-activated RAW 264.7 macrophages to the anti-inflammatory property of fungal ergosterol. Food Chem 126(1):207–212. doi:10.1016/j.foodchem.2010.10.101

    Article  CAS  Google Scholar 

  • Kwon HC, Zee SD, Cho SY, Choi SU, Lee KR (2002) Cytotoxic ergosterols from Paecilomyces sp. J300. Arch Phar Res 25(6):851–855. doi:10.1007/BF02977003

    Article  CAS  Google Scholar 

  • Li C, Huo C, Zhang M, Shi Q (2008) Chemistry of Chinese yew, Taxus chinensis var. mairei. Biochem Syst Ecol 36(4):266–282. doi:10.1016/j.bse.2007.08.002

    Article  Google Scholar 

  • Li Y, Lu C, Hu Z, Huang Y, Shen Y (2009) Secondary metabolites of Tubercularia sp. TF5, an endophytic fungal strain of Taxus mairei. Nat Prod Res 23(1):70–76. doi:10.1080/14786410701852818

    Article  Google Scholar 

  • Mooney BD, Nichols PD, De Salas MF, Hallegraeff GM (2007) Lipid, fatty acid, and sterol composition of eight species of kareniaceae (dinophyta):chemotaxonomy and putative lipid phycotoxins. J Phycol 43(1):101–111. doi:10.1111/j.1529-8817.2006.00312.x

    Article  CAS  Google Scholar 

  • Mucciarelli M, Camusso W, Maffei M, Panicco P, Bicchi C (2007) Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): chemical partitioning of a symbiosis. Microb Ecol 54(4):685–696. doi:10.1007/s00248-007-9227-0

    Article  CAS  Google Scholar 

  • Parmar VS, Jha A, Bisht KS, Taneja P, Singh SK, Kumar A, Jain R, Olsen CE (1999) Constituents of the yew trees. Phytochemistry 50(8):1267–1304

    Article  CAS  Google Scholar 

  • Pinruan U, Rungjindamai N, Choeyklin R, Lumyong S, Hyde KD, Jones EBG (2010) Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Divers 41(1):71–88. doi:10.1007/s13225-010-0029-1

    Article  Google Scholar 

  • Raja V, Kamalraj S, Muthumary JP (2008) Taxol from Botryodiplodia theobromae (BT 115)—AN endophytic fungus of Taxus baccata. J Biotechnol 136S:S187–S197. doi:10.1016/j.jbiotec.2008.07.1823, 10.1016/j.jbiotec.2008.07.1820, 10.1016/j.jbiotec.2008.07.1821, 10.1016/j.jbiotec.2008.07.1822, 10.1016/j.jbiotec.2008.07.1824, 10.1016/j.jbiotec.2008.07.1825

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330. doi:10.1111/j.1469-8137.2009.02773.x

    Article  CAS  Google Scholar 

  • Rungjindamai N, Pinruan U, Choeyklin R, Hattori T, Jones E (2008) Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis. Fungal Divers 33:139–161

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, AK Rmmert, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004

    Article  CAS  Google Scholar 

  • Suay I, Arenal F, Asensio FJ, Basilio A, Angeles Cabello M, Teresa Díez M, García JB, González del Val A, Gorrochategui J, Hernández P (2000) Screening of basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek 78(2):129–140. doi:10.1023/A:1026552024021

    Article  CAS  Google Scholar 

  • Sun PX, Zheng CJ, Li WC, Jin GL, Huang F, Qin LP (2011) Trichodermanin A, a novel diterpenoid from endophytic fungus culture. J Nat Med 1–4. doi:10.1007/s11418-010-0499-1

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biology Reviews 23(1–2):9–19. doi:10.1016/j.fbr.2009.07.001

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  Google Scholar 

  • Wang J, Wu J, Huang W, Tan R (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresource Technol 97(5):786–789. doi:10.1016/j.biortech.2005.03.025

    Article  CAS  Google Scholar 

  • Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2011) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 1–9. doi:10.1007/s00253-011-3472-3

  • Xu LL, Han T, Wu JZ, Zhang QY, Zhang H, Huang BK, Rahman K, Qin LP (2009) Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 16(6):609–616. doi:10.1016/j.phymed.2009.03.014

    Article  CAS  Google Scholar 

  • Yasukawa K, Aoki T, Takido M, Ikekawa T, Saito H, Matsuzawa T (1994) Inhibitory effects of ergosterol isolated from the edible mushroom Hypsizigus marmoreus on TPA-induced inflammatory ear oedema and tumour promotion in mice. Phytother Res 8(1):10–13. doi:10.1002/ptr.2650080103

    Article  CAS  Google Scholar 

  • You F, Han T, Wu J, Huang B, Qin L (2009) Antifungal secondary metabolites from endophytic Verticillium sp. Biochem Syst Ecol 37(3):162–165. doi:10.1016/j.bse.2009.03.008

    Article  CAS  Google Scholar 

  • Zhang P, Zhou P-P, Yu L-J (2009a) An endophytic taxol-producing fungus from Taxus media, Aspergillus candidus MD3. FEMS Microbiol Lett 293(2):155–159. doi:10.1111/j.1574-6968.2009.01481.x

    Article  CAS  Google Scholar 

  • Zhang P, Zhou P-P, Yu L-J (2009b) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59(3):227–232. doi:10.1007/s00284-008-9270-1

    Article  CAS  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11(2):159–168. doi:10.2174/138955711794519492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Jian Zheng or Lu-Ping Qin.

Additional information

Ling-Shang Wu and Chang-Ling Hu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, LS., Hu, CL., Han, T. et al. Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from Taxus chinensis var. mairei . Appl Microbiol Biotechnol 97, 305–315 (2013). https://doi.org/10.1007/s00253-012-4189-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4189-7

Keywords

Navigation