Skip to main content
Log in

Selective breeding for desiccation tolerance in liquid culture provides genetically stable inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The entomopathogenic nematode (EPN) Heterorhabditis bacteriophora is used in biological plant protection to control pest insects. In the past, several attempts targeted at an enhancement of the desiccation tolerance of EPN by genetic selection in order to improve their storage stability. The subsequent loss of improved beneficial traits after release of selection pressure has often been reported. In order to stabilize progress of selective breeding, selection during liquid culturing was tested against propagation in host insects. After release of the selection pressure, the tolerance was monitored over additional reproductive cycles in vivo and in vitro to compare the stability of the trait. Furthermore, it was tested whether the virulence of the selected strains would be impaired. Exposure to desiccation stress prior to propagation, in vivo or in vitro, both resulted in increasing desiccation tolerance. When selection pressure was released, the gained tolerance was lost again during in vivo production, whereas the tolerance was maintained at a high level when EPNs were cultured in liquid culture. In Heterorhabditis sp., liquid culture conditions produce highly homozygous, genetically stable inbred lines. The investigation provides easily applicable methods to improve and stabilize beneficial traits of heterorhabditid EPNs through selective breeding in liquid culture. Compared to nematodes from in vivo propagation, production in liquid media yielded EPN of higher virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai C, Shapiro-Ilan D, Gaugler R, Hopper K (2005) Stabilization of beneficial traits in Heterorhabditis bacteriophora through creation of inbred lines. Biol Control 32:220–227

    Article  Google Scholar 

  • Bilgrami A, Gaugler R, Shapiro-Ilan D, Adams B (2006) Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology 8:397–409

    Article  Google Scholar 

  • Ciche TA, Darby C, Ehlers R-U, Forst S, Goodrich-Blair H (2006) Dangerous liasons: The symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38:22–46

    Article  Google Scholar 

  • Dolgin SE, Charlesworth B, Baird ES, Cutter DA (2007) Inbreeding and outbreeding depression in Caenorhabditis nematodes. Evolution 61:1339–1352

    Article  Google Scholar 

  • Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI International, UK, pp 79–98

    Chapter  Google Scholar 

  • Ehlers R-U (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633

    Article  CAS  Google Scholar 

  • Ehlers R-U (2003) Biocontrol nematodes. In: Hokkanen HMT, Hajek AE (eds) Environmental impacts of microbial insecticides. Kluwer Academic Publishers, Dortrecht, pp 177–220

    Google Scholar 

  • Ehlers R-U, Lunau S, Krasomil-Osterfeld K, Osterfeld KH (1998) Liquid culture of the entomopathogenic nematode-bacterium-complex Heterorhabditis megidis/Photorhabdus luminescens. BioControl 43:77–86

    Article  Google Scholar 

  • Falconer DS, Mackay Trudy FC (1996) Quantitative genetics, 4th edn. Pearson, Harlow

    Google Scholar 

  • Gaugler R, Campbell JF (1991) Selection for enhanced host-finding of scarab larvae (Coleoptera: Scarabaeidae) in an entomopathogenic nematode. Environ Entomol 20:700–706

    Google Scholar 

  • Gaugler R, Georgis R (1991) Culture method and efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae). Biol Control 1:269–274

    Article  Google Scholar 

  • Gaugler R, Campbell JF, McGuire TR (1989) Selection for host-finding in Steinernema feltiae. J Invertebr Pathol 54:363–372

    Article  Google Scholar 

  • Grewal PS, Peters A (2005) Formulation and quality. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI (eds) Nematoles as biocontrol agents. CABI Publishing, Wallingford, pp 79–90

    Chapter  Google Scholar 

  • Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Nematoles as biocontrol agents. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Grewal PS, Bornstein-Forst S, Burnell AM, Glazer I (2006) Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogencic nematodes. Biol Control 38:54–65

    Article  CAS  Google Scholar 

  • Han R, Ehlers R-U (2000) Pathogenicity, development and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J Invertebr Pathol 75:55–58

    Article  CAS  Google Scholar 

  • Hopper KR, Roush RT, Powell W (1993) Management of genetics of biological-control introductions. Ann Rev Entomol 38:27–51

    Article  Google Scholar 

  • Johnigk SA, Ehlers R-U (1999) Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply. Nematology 1:717–726

    Article  Google Scholar 

  • Johnigk SA, Hollmer S, Strauch O, Wyss U, Ehlers R-U (2002) Heritability of the liquid culture mass production potential of the entomopathogenic nematode Heterorhabditis bacteriophora. Biocont Sci Technol 12:267–276

    Article  Google Scholar 

  • Johnigk SA, Ecke F, Poehling M, Ehlers R-U (2004) Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): improved timing of dauer juvenile inoculation. Appl Microbiol Biotechnol 64:651–658

    Article  CAS  Google Scholar 

  • Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey LA (ed) Manual of techniques in insect pathology. Biological techniques series. Academic Press, San Diego, pp 281–325

    Chapter  Google Scholar 

  • Lunau S, Stoessel S, Schmidt-Peisker AJ, Ehlers R-U (1993) Establishment of monoxenic inocula for scaling up in vitro cultures of the entomopathogenic nematodes of Steinernema spp. and Heterorhabditis spp. Nematologica 39:385–399

    Article  Google Scholar 

  • Mukuka J, Strauch O, Ehlers R-U (2010a) Variability in desiccation tolerance among different strains of the entomopathogenic nematode Heterorhabditis spp. Nematology 12:711–720

    Article  Google Scholar 

  • Mukuka J, Strauch O, Waeyenberge L, Viaene N, Moens M, Ehlers R-U (2010b) Heat tolerance variations among different strains of the entomopathogenic nematode Heterorhabditis spp. BioControl 55:423–434

    Article  Google Scholar 

  • Mukuka J, Strauch O, Hoppe C, Ehlers R-U (2010c) Major improvement of heat and desiccation tolerance in Heterorhabditis bacteriophora through cross-breeding of tolerant strains and successive genetic selection. BioControl 55:511–521

    Article  Google Scholar 

  • Mukuka J, Strauch O, Hoppe C, Ehlers R-U (2010d) Fitness of heat and desiccation tolerant hybrid strains of Heterorhabditis bacteriophora. J Pest Sci 83:281–287

    Article  Google Scholar 

  • Peters A (2000) Insect based assay for entomopathogenic nematode infectiousness: definitions, guidelines, problems. IOBC/WPRS Bull 23–2:109–114

    Google Scholar 

  • Radwan J, Unrug J, Śnigórska K, Gawrońska K (2004) Efectiveness of sexual selection in preventing fitness deterioration in bulb mite populations under natural selection. J Evol Biol 17:94–99

    Article  CAS  Google Scholar 

  • Shapiro DI, Glazer I, Segal D (1996) Trait stability and fitness of the heat tolerant entomopathogenic nematode Heterorhabditis bacteriophora IS-5 strain. Biol Control 6:238–244

    Article  Google Scholar 

  • Shapiro-Ilan DI, Lewis EE, Son Y, Tedders WL (2003) Superior efficacy observed in entomopathogenic nematodes applied in infected-host cadavers compared with application in aqueous suspension. J Invertebr Pathol 83:270–272

    Article  Google Scholar 

  • Solomon A, Paperna I, Glazer I (1999) Desiccation survival of the entomopathogenic nematode Steinernema feltiae: induction of anhydrobiosis. Nematology 1:61–68

    Article  CAS  Google Scholar 

  • Strauch O, Ehlers R-U (1998) Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl Microbiol Biotechnol 50:369–374

    Article  CAS  Google Scholar 

  • Strauch O, Stoessel S, Ehlers R-U (1994) Culture conditions define automictic or amphimictic reproduction in entomopathogenic rhabditid nematodes of the genus Heterorhabditis. Fund Appl Nematol 17:575–582

    Google Scholar 

  • Strauch O, Niemann I, Neumann A, Schmidt AJ, Peters A, Ehlers R-U (2000) Storage and formulation of the entomopathogenic nematodes Heterorhabditis indica and H. bacteriophora. BioControl 45:483–500

    Article  Google Scholar 

  • Strauch O, Oestergaard J, Hollmer S, Ehlers R-U (2004) Genetic improvement of the desiccation tolerance of the entomopathogenic nematode Heterorhabditis bacteriophora through selective breeding. Biol Control 31:218–226

    Article  Google Scholar 

  • Stuart RJ, Gaugler R (1996) Genetic adaptation and founder effect in laboratory populations of the entomopathogenic nematode Steinernema glaseri. Can J Zool 74:164–170

    Article  Google Scholar 

  • Toepfer S, Peters A, Ehlers R-U, Kuhlmann U (2008) Comparative assessment of the efficacy of entomopathogenic nematodes species at reducing western corn rootworm larvae and root damage in maize. J Appl Entomol 132:337–348

    Article  Google Scholar 

  • Toepfer S, Burger R, Ehlers R-U, Peters A, Kuhlmann U (2010) Controlling western corn rootworm larvae with entomopathogenic nematodes: effect of application techniques on plant-scale efficacy. J App Entomol 134:467–479

    Article  Google Scholar 

  • Wang X, Grewal PS (2002) Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biol Control 23:71–78

    Article  CAS  Google Scholar 

  • White GF (1927) Scientific apparatus and laboratory methods: a method for obtaining infective nematode larvae from cultures. Science 66:302–303

    Article  CAS  Google Scholar 

  • Yan X, Liu X, Han R, Chen S, Clercq P, Moens M (2010) Osmotic induction of anhydrobiosis in entomopathogenic nematodes of the genera Heterorhabditis and Steinernema. Biol Control 53:325–330

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Arne Peters (e-nema GmbH) for advice and for provision of nematodes. The scholarship by the Deutscher Akademischer Austauschdienst (http://www.daad.de) to the first author and to the PINC (http://www.pinc.ugent.be) master student N.H. Sumaya by VLIR (http://www.vliruos.be) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf-Udo Ehlers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbesse, S., Sumaya, N.H., Dörfler, A.V. et al. Selective breeding for desiccation tolerance in liquid culture provides genetically stable inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora . Appl Microbiol Biotechnol 97, 731–739 (2013). https://doi.org/10.1007/s00253-012-4227-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4227-5

Keywords

Navigation