Skip to main content
Log in

Encapsulation in a natural, preformed, multi-component and complex capsule: yeast cells

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

From the first observation about 40 years ago that yeast cells were interesting protective structures that could be used in several industrial applications, processes have been developed enabling technologists to incorporate several compounds possessing different physico-chemical (hydrophobic/hydrophilic) properties. Technologists screened yeast diversity to choose strains possessing the best potential and modified their physiological state to increase the uptake capability and the envelope plasticity, for instance by increasing the amount of lipids. Physico-chemical treatments were also used to improve the uptake and decrease the yeast natural material impact on the final products. For example, yeast cells could be “emptied” of their plasmic material. Yeast cells can also be coated with an additional polymeric material to increase resistance to heat treatment or decrease material liberation.

These capsules can be used for several applications including carbonless paper, perfuming tissues and drug targeting, but the main industrial application deals currently with flavour encapsulation, although encapsulation in yeast is also interesting for the global food industry trend for health products.

This paper proposes to review the use of yeast as an encapsulation structure focusing particularly on the properties of the yeast capsule and their impact on loading, protection, targeting and release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguedo M, Beney L, Waché Y, Belin JM (2003a) Mechanisms underlying the toxicity of lactone aroma compounds towards the producing yeast cells. J Appl Microbiol 94(2):258–265

    Article  PubMed  CAS  Google Scholar 

  • Aguedo M, Waché Y, Mazoyer V, Sequeira-Le Grand A, Belin JM (2003b) Increased electron donor and electron acceptor characters enhance the adhesion between oil droplets and cells of Yarrowia lipolytica as evaluated by a new cytometric assay. J Agric Food Chem 51(10):3007–3011

    Article  PubMed  CAS  Google Scholar 

  • Aguilar-Uscanga B, Francois JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37(3):268–274

    Article  PubMed  CAS  Google Scholar 

  • Alimardani P, Regnacq M, Moreau-Vauzelle C, Ferreira T, Rossignol T, Blondin B, Berges T (2004) SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process. Biochem J 381:195–202

    Article  PubMed  CAS  Google Scholar 

  • Behan JM, Perring KD (1992) Fabric softening compositions containing micro organism encapsulated perfume. US5078904

  • Benczedi D, Hahn A, Trophardy G, Cantergiani E, Wagner R (2007) Encapsulated hydrophilic compounds. US0122398A1

  • Beopoulos A, Chardot T, Nicaud JM (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91(6):692–696

    Article  PubMed  CAS  Google Scholar 

  • Billoo AG, Memon MA, Khaskheli SA, Murtaza G, Iqbal K, Saeed Shekhani M, Siddiqi AQ (2006) Role of a probiotic (Saccharomyces boulardii) in management and prevention of diarrhoea. World J Gastroenterol 12(28):4557–4560

    PubMed  CAS  Google Scholar 

  • Bishop JRP, Nelson G, Lamb J (1998) Microencapsulation in yeast cells. J Microencapsul 15(6):761–773

    Article  PubMed  CAS  Google Scholar 

  • Braun PC (1999) Nutrient uptake by Candida albicans: the influence of cell surface mannoproteins. Can J Microbiol 45(5):353–359

    PubMed  CAS  Google Scholar 

  • Cao-Hoang L, Marechal PA, Le-Thanh M, Gervais P, Waché Y (2008) Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: a guide for prokaryotic and eukaryotic investigation. Biotechnol J 3(7):890–903

    Article  PubMed  Google Scholar 

  • Chow C, Palecet P (2004) Enzyme encapsulation in permeabilized Saccharomyces cerevisiae cells. Biotechnol Prog 20:449–456

    Article  PubMed  CAS  Google Scholar 

  • Ciamponi F, Duckham C, Tirelli N (2012) Yeast cells as microcapsules. Analytical tools and process variables in the encapsulation of hydrophobes in S. cerevisiae. Appl Microbiol Biotechnol 95(6):1445–1456

    Article  PubMed  CAS  Google Scholar 

  • Czabany T, Athenstaedt K, Daum G (2007) Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta 1771:299–309

    Article  PubMed  CAS  Google Scholar 

  • Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics—Saccharomyces boulardii. Aliment Pharmacol Ther 26(6):767–778

    Article  PubMed  CAS  Google Scholar 

  • Dardelle G, Normand V, Steenhoudt M, Bouquerand PE, Chevalier M, Baumgartner P (2007) Flavour-encapsulation and flavour-release performances of a commercial yeast-based delivery system. Food Hydrocolloid 21(5–6):953–960

    Article  CAS  Google Scholar 

  • de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7(11):1951–1964

    Article  PubMed  Google Scholar 

  • De Nobel JG, Klis FM, Munnik T, Priem J, van den Ende H (1990) An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombe. Yeast 6(6):483–490

    Article  PubMed  Google Scholar 

  • Demarigny Y (2012) Fermented food products made with vegetable materials from tropical and warm countries: microbial and technological considerations. Int J Food Sci Tech 47(12):2469–2476

    Article  CAS  Google Scholar 

  • Desai KGH, Jin Park H (2005) Recent developments in microencapsulation of food ingredients. Dry Technol 23(7):1361–1394

    Article  CAS  Google Scholar 

  • Di Mattia CD, Sacchetti G, Mastrocola D, Pittia P (2009) Effect of phenolic antioxidants on the dispersion state and chemical stability of olive oil O/W emulsions. Food Res Int 42(8):1163–1170

    Article  Google Scholar 

  • Esposito E, Cervellati F, Menegatti E, Nastruzzi C, Cortesi R (2002) Spray dried Eudragit microparticles as encapsulation devices for vitamin C. Int J Pharm 242(1–2):329–334

    Article  PubMed  CAS  Google Scholar 

  • Fieber W, Hafner V, Normand V (2011) Oil droplet size determination in complex flavor delivery systems by diffusion NMR spectroscopy. J Coll Interf Sci 356:422–428

    Article  CAS  Google Scholar 

  • Franklin L, Ostroff G (2011) Hollow glucan particle or cell wall particle encapsulating a terpene component. EP2338332A2

  • Fuller EJ, Duckham SC, Wood EJ (2005) Using yeast to enhance the delivery of insulin through an epithelial monolayer. J Pharm Phramacol 57(S1):S05

    Google Scholar 

  • Fuller EJ, Wood EJ, Duckham C (2006) The mode of action of yeast mediated drug delivery. J Pharm Pharmacol 58:A1–A1

    Google Scholar 

  • German RJ, Pannell NA, Morris GGM (1982) Process for encapsulating substances by means of microorganisms, and the encapsulated products obtained thereby. EP0085805A1

  • Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50(3):213–224

    Article  PubMed  CAS  Google Scholar 

  • Glee PM, Sundstrom P, Hazen KC (1995) Expression of surface hydrophobic proteins by Candida albicans in vivo. Infect Immun 63(4):1373–1379

    PubMed  CAS  Google Scholar 

  • Grime JMA, Edwards MA, Rudd NC, Unwin PR (2008) Quantitative visualization of passive transport across bilayer lipid membranes. Proc Nat Acad Sci USA 105:14277–14282

    Article  PubMed  CAS  Google Scholar 

  • Hahn A, Trophady G (2005) Edible product comprising flavouring microcapsules. WO067733

  • Hardy FE, Willey AD, Scialla S (1996) Encapsulation of liquids in micro-organisms. US5496728

  • Inoue C, Ishiguro M, Ishiwaki N, Yamada K (1991) Process for preparation of microcapsules. EP0453316B1

  • Käppeli O, Fiechter A (1977) Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J Bacteriol 131(3):917–921

    PubMed  Google Scholar 

  • Kapteyn JC, Van Den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426(2):373–383

    Google Scholar 

  • Kilcher G, Delneri D, Duckham C, Tirelli N (2008) Probing (macro)molecular transport through cell walls. Faraday Discuss 139:199–212

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Oh YS, Kim SJ (2000) The possible involvement of the cell surface in aliphatic hydrocarbon utilization by an oil-degrading yeast, Yarrowia lipolytica 180. J Microbiol Biotechnol 10(3):333–337

    Google Scholar 

  • Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23(3):185–202

    Article  PubMed  CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26(3):239–256

    Article  PubMed  CAS  Google Scholar 

  • Kohlwein SD, Paltauf F (1983) Uptake of fatty acids by the yeasts, Saccharomyces uvarum and Saccharomycopsis lipolytica. Biochim Biophys Acta 792:310–317

    Google Scholar 

  • Li J, Ying SH, Shan LT, Feng MG (2010) A new non-hydrophobic cell wall protein (CWP10) of Metarhizium anisopliae enhances conidial hydrophobicity when expressed in Beauveria bassiana. Appl Microbiol Biotechnol 85(4):975–984

    Article  PubMed  CAS  Google Scholar 

  • Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793(4):650–663

    Article  PubMed  CAS  Google Scholar 

  • Ly MH, Naitali-Bouchez M, Meylheuc T, Bellon-Fontaine MN, Le TM, Belin JM, Wache Y (2006) Importance of bacterial surface properties to control the stability of emulsions. Int J Food Microbiol 112(1):26–34

    Article  PubMed  CAS  Google Scholar 

  • Masuoka J, Hazen KC (1997) Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity. Microbiology 143(Pt 9):3015–3021

    Article  PubMed  CAS  Google Scholar 

  • Matsushita T, Ibaraki SM, Warabi MS, Hiraishi S (1987) Biocapsule. US4696863

  • Mlickova K, Roux E, Athenstaedt K, d'Andrea S, Daum G, Chardot T, Nicaud JM (2004) Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 70(7):3918–3924

    Article  PubMed  CAS  Google Scholar 

  • Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S (2008) Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop 11(4):833–844

    Article  CAS  Google Scholar 

  • Nelson G, Duckham SC (2005) Yeast cells: a novel vehicle for drug delivery. Innov Pharma Technol February:52–55

  • Nelson G, Duckham SC, Crothers MED (2006) Microencapsulation in yeast cells and applications in drug delivery. In: Sonkë S (ed) Polymeric drug delivery I: particulate drug carriers, vol 923. American Chemical Society, pp 268–281

  • Normand V, Dardelle G, Bouquerand PE, Nicolas L, Johnston DJ (2005) Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. J Agric Food Chem 53(19):7532–7543

    Article  PubMed  CAS  Google Scholar 

  • Ostroff GR, Soto E (2012) Yeast cell wall particles for receptor-targeted nanoparticle delivery. US0070376A1

  • Osumi M, Fukuzumi F, Teranishi Y, Tanaka A, Fukui F (1975) Development of microbodies in Candida tropicalis during incubation in a n-alkane medium. Arch Microbiol 103(1):I–II

    Article  PubMed  CAS  Google Scholar 

  • Pannell NA (1994) Encapsulation of material in microbial cells. US005288632A

  • Paramera EI, Konteles SJ, Karathanos VT (2011a) Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem 125(3):892–902

    Article  CAS  Google Scholar 

  • Paramera EI, Konteles SJ, Karathanos VT (2011b) Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, beta-cyclodextrin and modified starch. Food Chem 125(3):913–922

    Article  CAS  Google Scholar 

  • Pradelles R, Alexandre H, Ortiz-Julien A, Chassagne D (2008) Effects of yeast cell-wall characteristics on 4-ethylphenol sorption capacity in model wine. J Agric Food Chem 56(24):11854–11861

    Article  PubMed  CAS  Google Scholar 

  • Sagar BF, Sagar AJG, Graham SG, Wragg RT (1994) Methods of encapsulating substances in biocapsules. WO94/22572

  • Sangwai MB, Vavia PR (2011) Effect of decisive formulation variables on bioencapsulation efficiency and integrity of yeast biocapsules for oral itraconazole delivery. J Microencapsul 28:311–322

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Orikoshi H, Hayashi H, Maeda Y (2003) Microcapsules and oral compositions containing the same. WO041509

  • Scherrer R, Louden L, Gerhardt P (1974) Porosity of the yeast cell wall and membrane. J Bacteriol 118(2):534–540

    PubMed  CAS  Google Scholar 

  • Serozym Laboratoire (1973). Procédé pour faire pénétrer, absorber et/ou fixer, par des microorganismes des substances diverses. FR2179528

  • Shank JL (1977) Encapsulation process utilizing microorganisms and products produced thereby. US4001480

  • Shi G, Rao L, Yu H, Xiang H, Pen G, Long S, Yang C (2007) Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J Food Eng 80(4):1060–1067

    Article  CAS  Google Scholar 

  • Shi GR, Rao LQ, Xie QJ, Li J, Li BX, Xiong XY (2010) Characterization of yeast cells as a microencapsulation wall material by Fourier-transform infrared spectroscopy. Vib Spectrosc 53(2):289–295

    Article  CAS  Google Scholar 

  • Shi GR, Rao LQ, Yu HZ, Xiang H, Yang H, Ji R (2008) Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm 349(1–2):83–93

    Article  PubMed  CAS  Google Scholar 

  • Specos MM, Garcia JJ, Tornesello J, Marino P, Vecchia MD, Tesoriero MV, Hermida LG (2010) Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg 104(10):653–658

    Article  PubMed  CAS  Google Scholar 

  • Suomalainen H, Nurminen T (1970) The lipid composition of cell wall and plasma membrane of baker’s yeast. Chem Phys Lipids 4(3):247–256

    Article  CAS  Google Scholar 

  • Ta TM, Cao-Hoang L, Romero-Guido C, Lourdin M, Phan-Thi H, Goudot S, Marechal PA, Waché Y (2012) A shift to 50 degrees C provokes death in distinct ways for glucose- and oleate-grown cells of Yarrowia lipolytica. Appl Microbiol Biotechnol 93(5):2125–2134

    Article  PubMed  CAS  Google Scholar 

  • Ta TMN, Cao-Hoang L, Phan-Thi H, Tran HD, Souffou N, Gresti J, Marechal PA, Cavin JF, Waché Y (2010) New insights into the effect of medium-chain-length lactones on yeast membranes. Importance of the culture medium. Appl Microbiol Biotechnol 87(3):1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 57(19):9141–9146

    Article  PubMed  CAS  Google Scholar 

  • Waché Y (2013) Microbial production of food flavours. In: McNeil B, Archer D, Giavasis I, Harvey L (eds) Microbial production of food ingredients, enzymes and nutraceuticals. Woodhead, Cambridge

    Google Scholar 

  • Waché Y, Bergmark K, Courthaudon JL, Aguedo M, Nicaud JM, Belin JM (2000) Medium-size droplets of methyl ricinoleate are reduced by cell-surface activity in the gamma-decalactone production by Yarrowia lipolytica. Lett Appl Microbiol 30(3):183–187

    Article  PubMed  Google Scholar 

  • Weber FJ, deBont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286(3):225–245

    Google Scholar 

  • Zuidam NJ, Heinrich E (2010) Encapsulation of Aroma. In: Zuidam NJ, Nedovic V (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 127–160

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency, by Oséo and by the Région Bourgogne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Waché.

Additional information

Pham-Hoang Bao Ngoc and Romero-Guido Cynthia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham-Hoang, B.N., Romero-Guido, C., Phan-Thi, H. et al. Encapsulation in a natural, preformed, multi-component and complex capsule: yeast cells. Appl Microbiol Biotechnol 97, 6635–6645 (2013). https://doi.org/10.1007/s00253-013-5044-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5044-1

Keywords

Navigation