Skip to main content
Log in

Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L−1 day−1. The results showed that 0.74 g L−1 of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L−1 was achieved. This represented an increase of 0.18 g L−1 in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson LG, Tanhua T, Björk G, Hjalmarsson S, Jones EP, Jutterström S, Rudels B, Swift JH, Wåhlstöm I (2010) Arctic ocean shelf–basin interaction: an active continental shelf CO2 pump and its impact on the degree of calcium carbonate solubility. Deep-Sea Res Oceanogr I 57(7):869–879

    Article  CAS  Google Scholar 

  • Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G (2012) Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour Technol (0)

  • Barbosa MJ, Albrecht M, Wijffels RH (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83(1):112–120

    Article  PubMed  CAS  Google Scholar 

  • Biersmith A, Benner R (1998) Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Mar Chem 63(1–2):131–144

    Article  CAS  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  PubMed  CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Chen C-H, Kuan T-C, Ong S-C, Lin C-S (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99(9):3389–3396

    Article  PubMed  CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838

    Article  PubMed  CAS  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531

    Article  Google Scholar 

  • Donati G, Paludetto R (1999) Batch and semibatch catalytic reactors (from theory to practice). Catal Today 52(2–3):183–195

    Article  CAS  Google Scholar 

  • Dubinsky Z, Rotem J (1974) Relations between algal populations and the pH of their media. Oecologia 16(1):53–60

    Article  Google Scholar 

  • Fan L-H, Zhang Y-T, Zhang L, Chen H-L (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325(1):336–345

    Article  CAS  Google Scholar 

  • Farrelly DJ, Everard CD, Brennan L, McDonnell KP (2013) Biological carbon mitigation using microalgae: effect of harvest time on carbon mitigation rate and carbon content of Dunaliella tertiolecta. Bioresour Technol (in press)

  • Farrelly DJ, Everard CD, Fagan CC, McDonnell KP (2013b) Carbon sequestration and the role of biological carbon mitigation: a review. Renew Sust Energ Rev 21:712–727

    Article  CAS  Google Scholar 

  • Farrelly DJ, Fagan CC, Everard CD, Brennan L, McDonnell KP (2013) Preliminary assessment of four microalgal strains for bio-mitigation of carbon in CO2 enhanced gas streams. Biomass Bioenergy (in press)

  • Griffiths M, Harrison SL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Haas AF, Christian W (2010) Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae. Aquat Biol 10:131–138

    Google Scholar 

  • Ho S-H, Chen C-Y, Lee D-J, Chang J-S (2010) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29(2):189–198

    Article  PubMed  CAS  Google Scholar 

  • Hulatt CJ, Thomas DN (2010) Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? Bioresour Technol 101(22):8690–8697

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Lopes E, Cacia Ferreira Lacerda LM, Franco TT (2008) Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochem Eng J 40(1):27–34

    Article  CAS  Google Scholar 

  • Janssen M, Slenders P, Tramper J, Mur LR, Wijffels R (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb Technol 29(4–5):298–305

    Article  CAS  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102(8):4945–4953

    Article  PubMed  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Control 10:456–469

    Article  CAS  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manag 36(6–9):717–720

    Article  CAS  Google Scholar 

  • Malinsky-Rushansky N, Legrand C (1996) Excretion of dissolved organic carbon by phytoplankton of different sizes and subsequent bacterial uptake. Mar Ecol Prog Ser 132:249–255

    Article  CAS  Google Scholar 

  • Pregnall AM (1983) Release of dissolved organic carbon from the estuarine intertida macroalga Enteromorpha prolifera. Mar Biol 73:37–42

    Article  CAS  Google Scholar 

  • Reichert CC, Reinehr CO, Costa JAV (2006) Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor. Braz J Chem Eng 23:23–28

    Article  Google Scholar 

  • Stepan DJ, Shockey RE, Moe TA, Dorn R (2001) Carbon dioxide sequestering using microalgal systems. US Department of Energy

  • Tang H, Abunasser N, Garcia MED, Chen M, Simon Ng KY, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88(10):3324–3330

    Article  CAS  Google Scholar 

  • Terasaka K, Hirabayashi A, Nishino T, Fujioka S, Kobayashi D (2011) Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem Eng Sci 66(14):3172–3179

    Article  CAS  Google Scholar 

  • Vašata P (1982) Semicontinuous algal tests. Acta Hydrochim Hydrobiol 10(4):339–344

    Article  Google Scholar 

  • Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under grant number 06/CP/E001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien J. Farrelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrelly, D.J., Brennan, L., Everard, C.D. et al. Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor. Appl Microbiol Biotechnol 98, 3157–3164 (2014). https://doi.org/10.1007/s00253-013-5322-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5322-y

Keywords

Navigation