Skip to main content
Log in

Modulating enzyme activity using ionic liquids or surfactants

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme–water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ajloo D, Sangian M, Ghadamgahi M, Evini M, Saboury AA (2013) Effect of two imidazolium derivatives of ionic liquids on the structure and activity of adenosine deaminase. Int J Biol Macromol 55:47–61

    Article  CAS  PubMed  Google Scholar 

  • Alfani F, Cantarella M, Spreti N, Germani R, Savelli G (2000) α-Chymotrypsin superactivity in cetyltrialkylammonium bromide-rich media. Appl Biochem Biotechnol 88(1–3):1–15

    Article  CAS  Google Scholar 

  • Baird S, Kelly SM, Price NC, Jaenicke E, Meesters C, Nillius D, Decker H, Nairn J (2007) Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation. Biochim Biophys Acta, Proteins Proteomics 1774(11):1380–1394

    Article  CAS  Google Scholar 

  • Biasutti MA, Abuin EB, Silber JJ, Correa NM, Lissi EA (2008) Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Adv Colloid Interface Sci 136(1–2):1–24

    Article  CAS  PubMed  Google Scholar 

  • Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15(2):194–200

    Article  CAS  PubMed  Google Scholar 

  • Brzozowski AM, Savage H, Verma CS, Turkenburg JP, Lawson DM, Svendsen A, Patkar S (2000) Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry (Mosc) 39(49):15071–15082

    Google Scholar 

  • Carvalho CML, Cabral JMS (2000) Reverse micelles as reaction media for lipases. Biochimie 82(11):1063–1085

    Article  CAS  PubMed  Google Scholar 

  • Celej MS, D'Andrea MG, Campana PT, Fidelio GD, Bianconi ML (2004) Superactivity and conformational changes on alpha-chymotrypsin upon interfacial binding to cationic micelles. Biochem J 378(3):1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Chen S-X, Wei D-Z, Hu Z-H (2001) Synthesis of galacto-oligosaccharides in AOT/isooctane reverse micelles by β-galactosidase. J Mol Catal B Enzym 16(2):109–114

    Article  Google Scholar 

  • Chiappe C, Neri L, Pieraccini D (2006) Application of hydrophilic ionic liquids as co-solvents in chloroperoxidase catalyzed oxidations. Tetrahedron Lett 47(29):5089–5093

    Article  CAS  Google Scholar 

  • Cong Y, Zhang Q, Woolford D, Schweikardt T, Khant H, Dougherty M, Ludtke SJ, Chiu W, Decker H (2009) Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy. Structure 17(5):749–758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • da Costa Lopes AM, João KG, Bogel-Łukasik E, Roseiro LB, Bogel-Łukasik R (2013) Pretreatment and fractionation of wheat straw using various ionic liquids. J Agric Food Chem 61(33):7874–7882

    Article  Google Scholar 

  • Das D, Das D, Das PK (2008) Improved activity of enzymes in mixed cationic reverse micelles with imidazolium-based surfactants. Biochimie 90(5):820–829

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Rimke T (1998) Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem 273(40):25889–25892

    Article  CAS  PubMed  Google Scholar 

  • Delorme V, Dhouib R, Canaan S, Fotiadu F, Carrière F, Cavalier J-F (2011) Effects of surfactants on lipase structure, activity, and inhibition. Pharm Res 28(8):1831–1842

    Article  CAS  PubMed  Google Scholar 

  • Diop A, Bouanzza AH, Daneault C, Montplaisir D (2013) New ionic liquids for the dissolution of lignin. BioResources 8(3):4270–4282

    Google Scholar 

  • Domingez de Maria P (2011) Ionic liquids in biotransformations and organocatalysis: solvents and beyond. Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Domínguez de María P, Maugeri Z (2011) Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. Curr Opin Chem Biol 15(2):220–225

    Article  PubMed  Google Scholar 

  • Durand E, Lecomte J, Villeneuve P (2013) Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions. Eur J Lipid Sci Technol 115(4):379–385

    Article  CAS  Google Scholar 

  • Espín JC, Wichers HJ (1999) Activation of a latent mushroom (Agaricus bisporus) tyrosinase isoform by sodium dodecyl sulfate (SDS). Kinetic properties of the SDS-activated isoform J Agric Food Chem 47(9):3518–3525

    Google Scholar 

  • Fan Y, Zhang S, Wang Q, Li J, Fan H, Shan D (2013) Interaction of an amino-functionalized ionic liquid with enzymes: a fluorescence spectroscopy study. Spectrochim Acta, Pt A: Mol Biomol Spectrosc 105:297–303

    Article  CAS  Google Scholar 

  • Fernandez-Lorente G, Palomo JM, Cabrera Z, Fernandez-Lafuente R, Guisán JM (2007) Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnol Bioeng 97(2):242–250

    Article  CAS  PubMed  Google Scholar 

  • Gandia-Herrero F, Jimenez-Atienzar M, Cabanes J, Garcia-Carmona F, Escribano J (2005) Differential activation of a latent polyphenol oxidase mediated by sodium dodecyl sulfate. J Agric Food Chem 53(17):6825–6830

    Article  CAS  PubMed  Google Scholar 

  • Goldfeder M, Egozy M, Shuster Ben-Yosef V, Adir N, Fishman A (2013) Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate. Appl Microbiol Biotechnol 97(5):1953–1961

    Article  CAS  PubMed  Google Scholar 

  • Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun(10):1235–1237

  • Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioproc E 15(1):40–53

    Article  CAS  Google Scholar 

  • Greaves TL, Drummond CJ (2008) Ionic liquids as amphiphile self-assembly media. Chem Soc Rev 37(8):1709–1726

    Article  CAS  PubMed  Google Scholar 

  • Heintz A, Lehmann JK, Kozlova SA, Balantseva EV, Bazyleva AB, Ondo D (2010) Micelle formation of alkylimidazolium ionic liquids in water and in ethylammonium nitrate ionic liquid: a calorimetric study. Fluid Phase Equilib 294(1–2):187–196

    Article  CAS  Google Scholar 

  • Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C, Fontecilla-Camps JC (1996) Lipase activation by nonionic detergents: the crystal structure of the porcine lipase–colipase–tetraethylene glycol monooctyl ether complex. J Biol Chem 271(30):18007–18016

    Article  CAS  PubMed  Google Scholar 

  • Hinckley G, Mozhaev V, Budde C, Khmelnitsky Y (2002) Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnol Lett 24(24):2083–2087

    Article  CAS  Google Scholar 

  • Husum T, Jorgensen C, Christensen M, Kirk O (2001) Enzyme catalysed synthesis in ambient temperature ionic liquids. Biocatal Biotransform 19(4):331–338

    Article  CAS  Google Scholar 

  • Itoh T, Han S, Matsushita Y, Hayase S (2004) Enhanced enantioselectivity and remarkable acceleration on the lipase-catalyzed transesterification using novel ionic liquids. Green Chem 6(9):437–439

    Article  CAS  Google Scholar 

  • Jaeger VW, Pfaendtner J (2013) Structure, dynamics, and activity ofxylanase solvated in binary mixtures of ionic liquid and water. ACS Chem Biol 8(6):1179–1186

    Article  CAS  Google Scholar 

  • Jones MN, Finn A, Mosavi-Movahedi A, Waller BJ (1987) The activation of Aspergillus niger catalase by sodium n-dodecyl-sulphate. Biochim Biophys Acta Protein Struct M 913(3):395–398

    Google Scholar 

  • Judge RA, Takahashi S, Longenecker KL, Fry EH, Abad-Zapatero C, Chiu ML (2009) The effect of ionic liquids on protein crystallization and x-ray diffraction resolution. Cryst Growth Des 9(8):3463–3469

    Article  CAS  Google Scholar 

  • Jungnickel C, Łuczak J, Ranke J, Fernández JF, Müller A, Thöming J (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf Physicochem Eng Aspects 316(1–3):278–284

    Article  CAS  Google Scholar 

  • Jutz F, Andanson J-M, Baiker A (2010) Ionic liquids and dense carbon dioxide: a beneficial biphasic system for catalysis. Chem Rev 111(2):322–353

    Article  PubMed  Google Scholar 

  • Kaftzik N, Wasserscheid P, Kragl U (2002) Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine. Org Process Res Dev 6(4):553–557

    Article  CAS  Google Scholar 

  • Kazlauskas RJ, Bornscheuer UT (2009) Finding better protein engineering strategies. Nat Chem Biol 5(8):526–529

    Article  CAS  PubMed  Google Scholar 

  • Kim K-W, Song B, Choi M-Y, Kim M-J (2001) Biocatalysis in ionic liquids: markedly enhanced enantioselectivity of lipase. Org Lett 3(10):1507–1509

    Article  CAS  PubMed  Google Scholar 

  • Lai J-Q, Li Z, Lu Y-H, Yang Z (2011) Specific ion effects of ionic liquids on enzyme activity and stability. Green Chem 13(7):1860–1868

    Article  CAS  Google Scholar 

  • Lang M, Kamrat T, Nidetzky B (2006) Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable β-glycosylhydrolase CelB from Pyrococcus furiosus. Biotechnol Bioeng 95(6):1093–1100

    Google Scholar 

  • Lee JK, Kim M-J (2002) Ionic liquid-coated enzyme for biocatalysis in organic solvent. J Org Chem 67(19):6845–6847

    Article  CAS  PubMed  Google Scholar 

  • Lichtenecker R, Schmid W (2009) Application of various ionic liquids as cosolvents for chloroperoxidase-catalysed biotransformations. Monatsh Chem 140(5):509–512

    Article  CAS  Google Scholar 

  • Lindberg D, de la Fuente Revenga M, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147(3–4):169–171

    Article  CAS  PubMed  Google Scholar 

  • López-serrano D, Sanchez-Amat A, Solano F (2002) Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea. Pigment Cell Res 15(2):104–111

    Google Scholar 

  • Lou W-Y, Zong M, Wu H (2005) Enzymic asymmetric hydrolysis of d, l-p-hydroxyphenylglycine methyl ester in aqueous ionic liquid co-solvent mixtures. Biotechnol Appl Biochem 41(2):151–156

    Article  CAS  PubMed  Google Scholar 

  • Lou W-Y, Zong M-H, Liu Y-Y, Wang J-F (2006) Efficient enantioselective hydrolysis of d, l-phenylglycine methyl ester catalyzed by immobilized Candida antarctica lipase B in ionic liquid containing systems. J Biotechnol 125(1):64–74

    Google Scholar 

  • Magalhaes da Silva SP, da Costa Lopes AM, Roseiro LB, Bogel-Lukasik R (2013) Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Adv 3(36):16040–16050

    Article  CAS  Google Scholar 

  • Martinek K, Levashov AV, Klyachko N, Khmelnitski YL, Berezin IV (1986) Micellar enzymology. Eur J Biochem 155(3):453–468

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Kaur K (2010) Ionic liquid microemulsions and their technological applications Indian J Chem. Sect A 49:662–684

    Google Scholar 

  • Mogensen JE, Sehgal P, Otzen DE (2005) Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry (Mosc) 44(5):1719–1730

    Google Scholar 

  • Moniruzzaman M, Kamiya N, Goto M (2008a) Biocatalysis in water-in-ionic liquid microemulsions: a case study with horseradish peroxidase. Langmuir 25(2):977–982

    Article  Google Scholar 

  • Moniruzzaman M, Kamiya N, Nakashima K, Goto M (2008b) Water-in-ionic liquid microemulsions as a new medium for enzymatic reactions. Green Chem 10(5):497–500

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48(3):295–314

    Article  CAS  Google Scholar 

  • Mutschler J, Rausis T, Bourgeois J-M, Bastian C, Zufferey D, Mohrenz IV, Fischer F (2009) Ionic liquid-coated immobilized lipase for the synthesis of methylglucose fatty acid esters. Green Chem 11(11):1793–1800

    Article  CAS  Google Scholar 

  • Naushad M, Alothman ZA, Khan AB, Ali M (2012) Effect of ionic liquid on activity, stability, and structure of enzymes: a review. Int J Biol Macromol 51(4):555–560

    Article  CAS  PubMed  Google Scholar 

  • Nillius D, Jaenicke E, Decker H (2008) Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors. FEBS Lett 582(5):749–754

    Article  CAS  PubMed  Google Scholar 

  • Nordwald EM, Kaar JL (2013) Mediating electrostatic binding of 1-butyl-3-methylimidazolium chloride to enzyme surfaces improves conformational stability. J Phys Chem B 117(30):8977–8986

    Article  CAS  PubMed  Google Scholar 

  • Okochi M, Nakagawa I, Kobayashi T, Hayashi S, Furusaki S, Honda H (2007) Enhanced activity of 3α-hydroxysteroid dehydrogenase by addition of the co-solvent 1-butyl-3-methylimidazolium (l)-lactate in aqueous phase of biphasic systems for reductive production of steroids. J Biotechnol 128(2):376–382

    Article  CAS  PubMed  Google Scholar 

  • Otzen D (2011) Protein–surfactant interactions: a tale of many states. Biochim Biophys Acta, Proteins Proteomics 1814(5):562–591

    Article  CAS  Google Scholar 

  • Pavlidis IV, Gournis D, Papadopoulos GK, Stamatis H (2009) Lipases in water-in-ionic liquid microemulsions: structural and activity studies. J Mol Catal B Enzym 60(1–2):50–56

    Article  CAS  Google Scholar 

  • Pinto PCAG, Costa SPF, Lima JLFC, Saraiva MLMFS (2012) β-Galactosidase activity in mixed micelles of imidazolium ionic liquids and sodium dodecylsulfate: a sequential injection kinetic study. Talanta 96:26–33

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Texter J (2008) Ionic liquids in microemulsions. Curr Opin Colloid Interface Sci 13(4):252–262

    Article  CAS  Google Scholar 

  • Rehmann L, Ivanova E, Ferguson JL, Gunaratne HQN, Seddon KR, Stephens GM (2012) Measuring the effect of ionic liquids on laccase activity using a simple, parallel method. Green Chem 14(3):725–733

    Article  CAS  Google Scholar 

  • Saeidian S, Keyhani E, Keyhani J (2007) Effect of ionic detergents, nonionic detergents, and chaotropic agents on polyphenol oxidase activity from dormant saffron (Crocus sativus L.) corms. J Agric Food Chem 55(9):3713–3719

    Google Scholar 

  • Savelli G, Spreti N, Di Profio P (2000) Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions. Curr Opin Colloid Interface Sci 5(1–2):111–117

    Article  CAS  Google Scholar 

  • Shin H-J, Yang J-W (1994) Galacto-oligosaccharide production by β-galactosidase in hydrophobic organic media. Biotechnol Lett 16(11):1157–1162

    Article  CAS  Google Scholar 

  • Shipovskov S, Gunaratne HQN, Seddon KR, Stephens G (2008) Catalytic activity of laccases in aqueous solutions of ionic liquids. Green Chem 10(7):806–810

    Article  CAS  Google Scholar 

  • Spreti N, Di Profio P, Marte L, Bufali S, Brinchi L, Savelli G (2001) Activation and stabilization of α-chymotrypsin by cationic additives. Eur J Biochem 268(24):6491–6497

    Article  CAS  PubMed  Google Scholar 

  • Tavares APM, Pereira JAN, Xavier AMRB (2012) Effect of ionic liquids activation on laccase from Trametes versicolor: enzymatic stability and activity. Eng Life Sci 12(6):648–655

    Google Scholar 

  • van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107(6):2757–2785

    Article  PubMed  Google Scholar 

  • Verma SK, Ghosh KK (2011) Effect of cationic surfactants on the enzymatic activity of α-chymotrypsin. Kinet Catal 52(1):6–10

    Article  CAS  Google Scholar 

  • Wehofsky N, Wespe C, Cerovsky V, Pech A, Hoess E, Rudolph R, Bordusa F (2008) Ionic liquids and proteases: a clean alliance for semisynthesis. ChemBioChem 9(9):1493–1499

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Li Y, Zou F, Lu L, Zhao Y, Huang X, Qu Y (2012) The catalytic efficiency of lipase in a novel water-in-[Bmim][PF6] microemulsion stabilized by both AOT and Triton X-100. Colloids Surf B: Biointerfaces 92:360–366

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama K, Abe Y, Hayase S, Nokami T, Itoh T (2013) Synergetic activation of lipase by an amino acid with alkyl-PEG sulfate ionic liquid. Chem Lett 42(6):663–665

    Article  CAS  Google Scholar 

  • Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 85(7):891–907

    Article  CAS  Google Scholar 

  • Zhao H, Baker GA, Holmes S (2011) Protease activation in glycerol-based deep eutectic solvents. J Mol Catal B Enzym 72(3–4):163–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng L, Zhang S, Yu X, Zhao L, Gao G, Yang X, Duan H, Cao S (2006) Enhancement of enantioselectivity in lipase-catalyzed resolution of N-(2-ethyl-6-methylphenyl)alanine by additives. J Mol Catal B Enzym 38(1):17–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, grant number 193/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Fishman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfeder, M., Fishman, A. Modulating enzyme activity using ionic liquids or surfactants. Appl Microbiol Biotechnol 98, 545–554 (2014). https://doi.org/10.1007/s00253-013-5395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5395-7

Key words

Navigation