Skip to main content
Log in

Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The removal of styrene was studied using two biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and one biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for BFs and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m−3 h−1 and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm−3, removal efficiencies between 70 % and 95 % were obtained in the three bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m−3 h−1 were obtained for the BF1-P and BF2-C, respectively (IL of 173 g m−3 h−1 and EBRT of 60 s in BF1-P; IL of 89 g m−3 h−1 and EBRT of 90 s in BF2-C). A maximum EC of 52 g m−3 h−1 was obtained for the BTF (IL of 116 g m−3 h−1, EBRT of 45 s). Problems regarding high pressure drop appeared in the peat BF, whereas drying episodes occurred in the coconut fibre BF. DGGE revealed that the pure culture used for BF inoculation was not detected by day 105. Although two different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amann R, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 12:231–236

    Article  CAS  PubMed  Google Scholar 

  • Arnold M, Reittu A, von Wright A, Martikainen PJ, Suihko M-L (1997) Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol 48:738–744

    Article  CAS  PubMed  Google Scholar 

  • Bina B, Dehghanzadeh R, Pourmoghadas H, Kalantary A, Torkian A (2004) Removal of styrene from waste gas stream using a biofilter. J Res Med Sci 6:280–288

    Google Scholar 

  • Bodilis J, Nsigue-Meilo S, Besaury L, Quillet L (2012) Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PLoS ONE 7(4):1–14

  • Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837–849

    Article  CAS  PubMed  Google Scholar 

  • Cabrol L, Malhautier L, Poly F, Lepeuple AS, Fanlo JL (2012) Bacterial dynamics in steady-state biofilters: beyond functional stability. FEMS Microbiol Ecol 79:260–271

    Article  CAS  PubMed  Google Scholar 

  • Dehghanzadeh R, Torkian A, Bina B, Poormoghaddas H, Kalantary A (2005) Biodegradation of styrene laden waste gas stream using a compost-based biofilter. Chemosphere 60:434–439

    Article  CAS  PubMed  Google Scholar 

  • Derwent RG, Jenkin ME, Saunders SM (1996) Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos Environ 30:181–199

    Article  CAS  Google Scholar 

  • Dion St-Pierre MC, Avalos A, Heitz M (2009) Biofiltration of air contaminated by styrene vapors on inorganic filtering media: an experimental study. J Air Waste Manag Assoc 59:568–578

    Article  Google Scholar 

  • International Agency for Research on Cancer (IARC) (1987) IARC Monographs on the evaluation of carcinogenic risks to humans. Overall evaluations of carcinogenicity: an updating of IARC Monographs Volumes 1 to 42. Supplement 7. World Health Organization, Lyon, France

    Google Scholar 

  • Ivanpour R, Cox HHJ, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24:254–267

    Article  Google Scholar 

  • Jang JH, Hirai M, Shoda M (2004) Styrene degradation by Pseudomonas sp. SR-5 in biofilters with organic and inorganic packing materials. Appl Microbiol Biotechnol 65:349–355

  • Jubany I, Lafuente J, Carrera J, Baeza JA (2009) Automated thresholding method (ATM) for biomass fraction determination using FISH and confocal microscopy. J Chem Technol Biotechnol 84:1140–1145

    Article  CAS  Google Scholar 

  • Juneson C, Ward OP, Singh A (2001) Microbial treatment of a styrene-contaminated air stream in a biofilter with high elimination capacities. J Ind Microbiol Biot 26:196–202

    Article  CAS  Google Scholar 

  • Kennes C, Veiga MC (2013) Biotrickling filters. In: Kennes C, Veiga MC (eds) Air pollution prevention and control, 1st edn. Wiley, United Kingdom, pp 121–138

    Chapter  Google Scholar 

  • Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84:1419–1436

    Article  CAS  Google Scholar 

  • Kim J, Ryu HW, Jung DJ, Cho KS (2005) Styrene degradation in a polyurethane biofilter inoculated with Pseudomonas sp. IS-3. J Microbiol Biotechnol 15:1207–1213

  • Lebrero R, Rodriguez E, Estrada JM, Garcia-Encina PA, Muñoz R (2012) Odor abatement in biotrickling filters: effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal. Bioresour Technol 109:38–45

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ye G, Sun D, An T, Sun G, Liang S (2012) Performance of a biotrickling filter in the removal of waste gases containing low concentrations of mixed VOCs from a paint and coating plant. Biodegradation 23(1):177–187

    Article  CAS  PubMed  Google Scholar 

  • Loy A, Maixner F, Wagner M, Horn M (2007) probeBase — an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35:D800–D804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malhautier L, Khammar N, Bayle S, Fanlo JL (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Ramsing N (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRN. Appl Environ Microbiol 59:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novak J, Paca J, Halecky M, Socco CR (2008) Styrene biofiltration in a trickle-bed reactor. Braz Arch Biol Techn 51(2):385–390

    Article  CAS  Google Scholar 

  • Okamoto K, Izawa M, Yanase H (2003) Isolation and application of a styrene-degrading strain of Pseudomonas putida to biofiltration. J Biosci Bioeng 95:633–636

  • Paca J, Koutsky B, Maryska M, Halecky M (2001) Styrene degradation along the bed height of perlite biofilter. J Chem Technol Biotechnol 76:873–878

    Article  CAS  Google Scholar 

  • Rene ER, Lopez ME, Veiga MC, Kennes C (2010) Performance of a fungal monolith bioreactor for the removal of styrene from polluted air. Bioresour Technol 101:2608–2615

    Article  CAS  PubMed  Google Scholar 

  • Sempere F, Martinez-Soria V, Palau J, Penya-roja JM, San Valero P, Gabaldon C (2011) Effects of nitrogen source and empty bed residence time on the removal of styrene gaseous emissions by biotrickling filtration. Bioproc Biosyst Eng 34:859–867

    Article  CAS  Google Scholar 

  • Shareefdeen Z, Singh A (2005) Biotechnology for odor and air pollution control. Springer, Heidelberg, Germany, p 131

    Book  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1994) OPPT fact sheets, styrene fact sheets: support document. US-EPA 749-F95-019a

Download references

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. 284949. Financial support from Ministerio de Economía y Competitividad (Project CTM2010-15031/TECNO) and Generalitat Valenciana (PROMETEO/2013/053), Spain, is also acknowledged. M.C. Pérez acknowledges the Ministerio de Educación, Cultura y Deporte, Spain for her FPU contract (AP2009-2645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Álvarez-Hornos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, M.C., Álvarez-Hornos, F.J., Portune, K. et al. Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures. Appl Microbiol Biotechnol 99, 19–32 (2015). https://doi.org/10.1007/s00253-014-5773-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5773-9

Keywords

Navigation